1
|
Wallace RP, Refvik KC, Antane JT, Brünggel K, Tremain AC, Raczy MR, Alpar AT, Nguyen M, Solanki A, Slezak AJ, Watkins EA, Lauterbach AL, Cao S, Wilson DS, Hubbell JA. Synthetically mannosylated antigens induce antigen-specific humoral tolerance and reduce anti-drug antibody responses to immunogenic biologics. Cell Rep Med 2024; 5:101345. [PMID: 38128533 PMCID: PMC10829756 DOI: 10.1016/j.xcrm.2023.101345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients that reduces efficacy and increases adverse reactions. Our laboratory has shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer, p(Man). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We find that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by T regulatory cells. We identify increased T cell receptor signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.
Collapse
Affiliation(s)
- Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kirsten C Refvik
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kym Brünggel
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Abigail L Lauterbach
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shijie Cao
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21211, USA.
| | - Jeffrey A Hubbell
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|