1
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Pan D, Wu W, Zuo G, Xie X, Li H, Ren X, Kong C, Zhou W, Zhang Z, Waterfall M, Chen S. Sphingosine 1-phosphate receptor 2 promotes erythrocyte clearance by vascular smooth muscle cells in intraplaque hemorrhage through MFG-E8 production. Cell Signal 2022; 98:110419. [PMID: 35905868 DOI: 10.1016/j.cellsig.2022.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Intraplaque hemorrhage (IPH) accelerates atherosclerosis progression. To scavenge excessive red blood cells (RBCs), vascular smooth muscle cells (VSMCs) with great plasticity may function as phagocytes. Here, we investigated the erythrophagocytosis function of VSMCs and possible regulations involved. Based on transcriptional microarray analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that genes up-regulated in human carotid atheroma with IPH were enriched in functions of phagocytic activities, while those down-regulated were enriched in VSMCs contraction function. Transcriptional expression of Milk fat globule-epidermal growth factor 8 (MFG-E8) was also down-regulated in atheroma with IPH. In high-fat diet-fed apolipoprotein E-deficient mice, erythrocytes were present in cells expressing VSMC markers αSMA in the brachiocephalic artery, suggesting VSMCs play a role in erythrophagocytosis. Using immunofluorescence and flow cytometry, we also found that eryptotic RBCs were bound to and internalized by VSMCs in a phosphatidylserine/MFG-E8/integrin αVβ3 dependent manner in vitro. Inhibiting S1PR2 signaling with specific inhibitor JTE-013 or siRNA decreased Mfge8 expression and impaired the erythrophagocytosis of VSMCs in vitro. Partial ligation was performed in the left common carotid artery (LCA) followed by intra-intimal injection of isolated erythrocytes to observe their clearance in vivo. Interfering S1PR2 expression in VSMCs with Adeno-associated virus 9 inhibited MFG-E8 expression inside LCA plaques receiving RBCs injection and attenuated erythrocytes clearance. Erythrophagocytosis by VSMCs increased vascular endothelial growth factor-a secretion and promoted angiogenesis. The present study revealed that VSMCs act as phagocytes for RBC clearance through S1PR2 activation induced MFG-E8 release.
Collapse
Affiliation(s)
- Daorong Pan
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiangrong Xie
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Hui Li
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaomin Ren
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zihan Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Martin Waterfall
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
3
|
Wilkinson AL, John AE, Barrett JW, Gower E, Morrison VS, Man Y, Pun KT, Roper JA, Luckett JC, Borthwick LA, Barksby BS, Burgoyne RA, Barnes R, Fisher AJ, Procopiou PA, Hatley RJD, Barrett TN, Marshall RP, Macdonald SJF, Jenkins RG, Slack RJ. Pharmacological characterisation of GSK3335103, an oral αvβ6 integrin small molecule RGD-mimetic inhibitor for the treatment of fibrotic disease. Eur J Pharmacol 2021; 913:174618. [PMID: 34762934 DOI: 10.1016/j.ejphar.2021.174618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
Fibrosis is the formation of scar tissue due to injury or long-term inflammation and is a leading cause of morbidity and mortality. Activation of the pro-fibrotic cytokine transforming growth factor-β (TGFβ) via the alpha-V beta-6 (αvβ6) integrin has been identified as playing a key role in the development of fibrosis. Therefore, a drug discovery programme to identify an orally bioavailable small molecule αvβ6 arginyl-glycinyl-aspartic acid (RGD)-mimetic was initiated. As part of a medicinal chemistry programme GSK3335103 was identified and profiled in a range of pre-clinical in vitro and in vivo systems. GSK3335103 was shown to bind to the αvβ6 with high affinity and demonstrated fast binding kinetics. In primary human lung epithelial cells, GSK3335103-induced concentration- and time-dependent internalisation of αvβ6 with a rapid return of integrin to the cell surface observed after washout. Following sustained engagement of the αvβ6 integrin in vitro, lysosomal degradation was induced by GSK3335103. GSK3335103 was shown to engage with the αvβ6 integrin and inhibit the activation of TGFβ in both ex vivo IPF tissue and in a murine model of bleomycin-induced lung fibrosis, as measured by αvβ6 engagement, TGFβ signalling and collagen deposition, with a prolonged duration of action observed in vivo. In summary, GSK3335103 is a potent αvβ6 inhibitor that attenuates TGFβ signalling in vitro and in vivo with a well-defined pharmacokinetic/pharmacodynamic relationship. This translates to a significant reduction of collagen deposition in vivo and therefore GSK3335103 represents a potential novel oral therapy for fibrotic disorders.
Collapse
Affiliation(s)
- Alex L Wilkinson
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Alison E John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, UK
| | - John W Barrett
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - E Gower
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Valerie S Morrison
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Yim Man
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - K Tao Pun
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - James A Roper
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Jeni C Luckett
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Lee A Borthwick
- Fibrosis Research Group, Newcastle University Biosciences Institute, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Ben S Barksby
- Fibrosis Research Group, Newcastle University Biosciences Institute, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Rachel A Burgoyne
- Fibrosis Research Group, Newcastle University Biosciences Institute, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Rory Barnes
- Fibrosis Research Group, Newcastle University Biosciences Institute, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Andrew J Fisher
- Fibrosis Research Group, Newcastle University Biosciences Institute, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS, Foundation Trust, Newcastle Upon Tyne, UK
| | | | - Richard J D Hatley
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Tim N Barrett
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Richard P Marshall
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Simon J F Macdonald
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, UK
| | - Robert J Slack
- Fibrosis DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, UK.
| |
Collapse
|