1
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
2
|
Jang SH, Shim JS, Kim J, Shin EG, Yoon JH, Lee LE, Kwon HK, Song JJ. Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c + B Cells Induced by TLR9 in Lupus. Immune Netw 2024; 24:e25. [PMID: 39246618 PMCID: PMC11377949 DOI: 10.4110/in.2024.24.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c+ B cells in ODN-injected mice. Post-ex vivo ODN stimulation, we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients. In vivo experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c+ B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.
Collapse
Affiliation(s)
- Sung Hoon Jang
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo Sung Shim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jieun Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Gyeol Shin
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Hwi Yoon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Keun Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
3
|
The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney Int 2023; 103:343-356. [PMID: 36332729 DOI: 10.1016/j.kint.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
Current treatment strategies for autoimmune diseases may not sufficiently control aberrant metabolism in B-cells. To address this concern, we investigated a biguanide derivative, IM156, as a potential regulator for B-cell metabolism in vitro and in vivo on overactive B-cells stimulated by the pro-inflammatory receptor TLR-9 agonist CpG oligodeoxynucleotide, a mimic of viral/bacterial DNA. Using RNA sequencing, we analyzed the B-cell transcriptome expression, identifying the major molecular pathways affected by IM156 in vivo. We also evaluated the anti-inflammatory effects of IM156 in lupus-prone NZB/W F1 mice. CD19+B-cells exhibited higher mitochondrial mass and mitochondrial membrane potential compared to T-cells and were more susceptible to IM156-mediated oxidative phosphorylation inhibition. In vivo, IM156 inhibited mitochondrial oxidative phosphorylation, cell cycle progression, plasmablast differentiation, and activation marker levels in CpG oligodeoxynucleotide-stimulated mouse spleen B-cells. Interestingly, IM156 treatment significantly increased overall survival, reduced glomerulonephritis and inhibited B-cell activation in the NZB/W F1 mice. Thus, our data indicated that IM156 suppressed the mitochondrial membrane potentials of activated B-cells in mice, contributing to the mitigation of lupus activity. Hence, IM156 may represent a therapeutic alternative for autoimmune disease mediated by B-cell hyperactivity.
Collapse
|
4
|
Zhou Y, Zhang Y, Cheng H, Li X, Feng D, Yue S, Xu J, Xie H, Luo Z. Therapeutic Effects of Omentin-1 on Pulmonary Fibrosis by Attenuating Fibroblast Activation via AMP-Activated Protein Kinase Pathway. Biomedicines 2022; 10:2715. [PMID: 36359232 PMCID: PMC9687324 DOI: 10.3390/biomedicines10112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal age-related chronic lung disease, characterized by progressive scarring of the lungs by activated fibroblasts. The effect of omentin-1 against pulmonary fibrosis and fibroblast activation has not been investigated. The purpose of this experiment is to investigate the role of omentin-1 in bleomycin (BLM)-induced lung fibrosis and its mechanism. Our results showed that the loss of omentin-1 exaggerated lung fibrosis induced by BLM. On the contrary, adenoviral-overexpression of omentin-1 significantly alleviated BLM-induced lung fibrosis both in preventive and therapeutic regimens. Moreover, omentin-1 prevented fibroblast activation determined by a decreased number of S100A4+ (fibroblasts marker) α-SMA+ cells in vivo, and a decreased level of α-SMA expression both in mice primary fibroblasts and human primary fibroblasts induced by TGF-β in vitro. Furthermore, the phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly lower in the fibrotic foci induced by BLM, and the adenoviral-overexpression of omentin-1 significantly increased the p-AMPK level in vivo. Importantly, Compound C, the inhibitor of AMPK, significantly attenuated the protective effect of omentin-1 on BLM-induced lung fibrosis and reversed the effect of omentin-1 on fibroblast activation by TGF-β. Omentin-1 can be a promising therapeutic agent for the prevention and treatment of lung fibrosis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haipeng Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianping Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410008, China
| |
Collapse
|
5
|
Janku F, Beom SH, Moon YW, Kim TW, Shin YG, Yim DS, Kim GM, Kim HS, Kim SY, Cheong JH, Lee YW, Geiger B, Yoo S, Thurston A, Welsch D, Rudoltz MS, Rha SY. First-in-human study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors. Invest New Drugs 2022; 40:1001-1010. [PMID: 35802288 PMCID: PMC9395488 DOI: 10.1007/s10637-022-01277-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Preclinical models suggest anticancer activity of IM156, a novel biguanide mitochondrial protein complex 1 inhibitor of oxidative phosphorylation (OXPHOS). This first-in-human dose-escalation study enrolled patients with refractory advanced solid tumors to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D). Eligible patients received oral IM156 every other day (QOD) or daily (QD) and were assessed for safety, dose-limiting toxicities (DLTs), pharmacokinetics, and preliminary signals of efficacy. 22 patients with advanced cancers (gastric, n = 8; colorectal, n = 3; ovarian, n = 3; other, n = 8) received IM156 100 to 1,200 mg either QOD or QD. There were no DLTs. However, 1,200 mg QD was not well tolerated due to nausea; 800 mg QD was determined as the RP2D. The most frequent treatment-related AEs (TRAEs) were nausea (n = 15; 68%), diarrhea (n = 10; 46%), emesis (n = 9; 41%), fatigue (n = 4; 18%) and abdominal pain, constipation, and blood lactate increased (n = 2 each; 9%). Grade 3 nausea (n = 3; 14%) was the only grade ≥ 3 TRAE. Plasma exposures increased dose proportionally; mean Day 27 area under the curve (AUC<sub>0-24</sub>) values were higher following QD administration compared to the respective QOD regimen. Stable disease (SD), observed in 7 (32%) patients (confirmed in 2 [9%]), was the best response. To our knowledge, this is the first phase 1 study of an OXPHOS inhibitor that established a RP2D for further clinical development in cancer. Observed AEs of IM156 were manageable and SD was the best response.
Collapse
Affiliation(s)
- Filip Janku
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Seung-Hoon Beom
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wha Moon
- grid.452398.10000 0004 0570 1076Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Tae Won Kim
- grid.267370.70000 0004 0533 4667Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young G. Shin
- grid.254230.20000 0001 0722 6377Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Dong-Seok Yim
- grid.411947.e0000 0004 0470 4224Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gun Min Kim
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Song Kim
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Young Kim
- grid.267370.70000 0004 0533 4667Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Barb Geiger
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | - Sanghee Yoo
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | | | - Dean Welsch
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | | | - Sun Young Rha
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|