1
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Pustovit KB, Kuzmin VS, Abramochkin DV. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:303-13. [PMID: 26680209 DOI: 10.1007/s00210-015-1199-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 11/26/2022]
Abstract
Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.
Collapse
Affiliation(s)
- Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory 1, building 12, Moscow, 119991, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory 1, building 12, Moscow, 119991, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory 1, building 12, Moscow, 119991, Russia.
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia.
| |
Collapse
|
3
|
García-Villalón AL, Fernández N, Monge L, Granado M, Carreño-Tarragona G, Figueras JC, Diéguez G. Coronary response to diadenosine triphosphate after ischemia-reperfusion in the isolated rat heart. Exp Biol Med (Maywood) 2012; 237:966-72. [PMID: 22890026 DOI: 10.1258/ebm.2012.012006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diadenosine triphosphate (Ap3A) is a vasoactive mediator stored in platelet granules that may be released during coronary ischemia-reperfusion. To study its coronary effects in such circumstances, rat hearts were perfused in a Langendorff preparation and the coronary response to Ap3A (10(-7)-10(-5) mol/L) was recorded. Both at basal coronary resting tone and after precontraction with 11-dideoxy-1a,9a-epoxymethanoprostaglandin F(2)(α) (U46619), Ap3A produced concentration-dependent vasodilation in the heart, which was attenuated following ischemia-reperfusion. Ap3A-induced relaxation was also attenuated in control conditions and after ischemia-reperfusion by the purinergic P2Y antagonist reactive blue 2 (2 × 10(-6) mol/L), the P2Y(1) antagonist MRS 2179 (10(-5) mol/L), the nitric oxide synthesis inhibitor N-omega-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/L) and the ATP-dependent potassium channel blocker glibenclamide (10(-5) mol/L). These results suggest that Ap3A induces coronary vasodilation, an effect attenuated by ischemia-reperfusion due to the functional impairment of purinergic P2Y receptors and K(ATP) channels, and/or reduced nitric oxide release. This impairment of vasodilation may contribute to the coronary dysregulation that occurs during ischemia-reperfusion.
Collapse
|
4
|
García-Villalón AL, Fernández N, Monge L, Diéguez G. Coronary response to diadenosine tetraphosphate after ischemia-reperfusion in the isolated rat heart. Eur J Pharmacol 2011; 660:394-401. [PMID: 21513710 DOI: 10.1016/j.ejphar.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 03/17/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Diadenosine tetraphosphate (AP4A) is a vasoactive mediator that may be released from platelet granules and that may reach higher plasma concentrations during coronary ischemia-reperfusion. The objective of this study was to analyze its coronary effects in such conditions. To this, rat hearts were perfused in a Langendorff preparation and the coronary response to Ap4A (10(-7)-10(-5) M) was recorded. In control hearts, Ap4A produced concentration-dependent vasodilatation both at the basal coronary resting tone and after precontracting coronary vasculature with 11-dideoxy-1a,9a-epoxymethanoprostaglandin F2α (U46619), and this vasodilatation was reduced by reactive blue 2 (2×10(-6) M), glibenclamide (10(-5) M), H89 (10(-6) M), U73122 (5×10(-6) M) and endothelin-1 (10(-9) M), but not by L-NAME (10(-4) M), isatin (10(-4) M), GF109203x (5×10(-7) M), or wortmannin (5×10(-7) M). After ischemia-reperfusion, the vasodilatation to Ap4A diminished, both in hearts with basal or increased vascular tone, and in this case the relaxation to Ap4A was not modified by reactive blue 2, L-NAME, glibenclamide, isatin, H89, GF109203x or wortmannin, although it was reduced by U73122 and endothelin-1. UTP produced coronary relaxation that was also reduced after ischemia-reperfusion. These results suggest that the coronary relaxation to Ap4A is reduced after ischemia-reperfusion, and that this reduction may be due to impaired effects of KATP channels and to reduced response of purinergic P2Y receptors.
Collapse
Affiliation(s)
- Angel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | | | | |
Collapse
|
5
|
Glorieux G, Cohen G, Jankowski J, Vanholder R. Platelet/Leukocyte activation, inflammation, and uremia. Semin Dial 2010; 22:423-7. [PMID: 19708994 DOI: 10.1111/j.1525-139x.2009.00593.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic kidney disease (CKD) is a state of chronic, low-grade inflammation which contributes to the accelerated progression of chronic inflammatory disturbances of which atherosclerosis is a major example. Platelet and leukocyte activation and interaction, evoked by the uremic condition, play an important role in this process. The effect of specific uremic retention solutes, progressively retained in uremia, on important platelet and leukocytes functions is discussed and summarized. The main uremic toxins involved are molecules with a molecular weight above 500 Da (the so-called "middle molecules") and/or protein-bound molecules. Classification of the molecules and elucidation of the pathophysiological pathways involved will result in new therapeutic strategies pursuing specific removal or pharmacological neutralization of molecular impact.
Collapse
Affiliation(s)
- Griet Glorieux
- Department of Internal Medicine, Renal Division, Ghent University Hospital, Gent, Belgium.
| | | | | | | |
Collapse
|
6
|
Warnecke S, Meier C. Synthesis of nucleoside Di- and triphosphates and dinucleoside polyphosphates with cycloSal-nucleotides. J Org Chem 2009; 74:3024-30. [PMID: 19320463 DOI: 10.1021/jo802348h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new and efficient method for the synthesis of nucleoside di- and triphosphates as well as dinucleoside polyphosphates (Np(n)N') is described. 5-Acceptor-substituted (5-nitro and 5-chloro) cycloSal-nucleotides are used as starting material that were reacted with a variety of phosphate nucleophiles as pyrophosphate or nucleotides to the corresponding products in short times and very good yields. After consumption of the starting cycloSal-phosphate triester, first the protecting groups were cleaved and finally the products were isolated after RP-column chromatography. Examples are shown for all five pyrimidine and purine bases found in natural nucleosides as well as one non-natural pyrimidine base to prove that the method can be applied generally.
Collapse
Affiliation(s)
- Svenja Warnecke
- Organic Chemistry, Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | | |
Collapse
|
7
|
García-Villalón AL, Monge L, Fernández N, Salcedo A, Narváez-Sánchez R, Diéguez G. Coronary response to diadenosine pentaphosphate after ischaemia-reperfusion in the isolated rat heart. Cardiovasc Res 2008; 81:336-43. [PMID: 19029135 DOI: 10.1093/cvr/cvn321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Diadenosine polyphosphates are vasoactive mediators that may be released from platelet granules and which may be present at higher concentrations during coronary ischaemia-reperfusion. The objective of this study was to analyse their effects in such conditions. METHODS AND RESULTS Rat hearts were perfused in a Langendorff preparation and the response to diadenosine pentaphosphate (Ap5A, 10(-7)-10(-5) M) was recorded. In control hearts, Ap5A produced a small, transient coronary vasoconstriction followed by marked vasodilatation, as well as a reduction in the left ventricular developed pressure dP/dt and heart rate, both at the basal coronary resting tone or after pre-contracting coronary arteries with 9,11-dideoxy-11alpha, 9alpha-epoxymethanoprostaglandin F2alpha (U46619). After ischaemia-reperfusion, the vasoconstriction in response to Ap5A was augmented and vasodilatation diminished, both in hearts with basal or increased vascular tone. The pyridoxal derivative P(2) purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 3 x 10(-6) M), inhibited this vasoconstriction, while the antagonist of purinergic P(2Y) receptors, Reactive Blue 2 (2 x 10(-6) M), inhibited the vasodilatation, both before and after ischaemia-reperfusion. The antagonist of nitric oxide synthesis N-omega-nitro-L- arginine methyl ester (L-NAME, 10(-4) M) did not modify the response to Ap5A, whereas the cyclooxygenase inhibitor, meclofenamate (2 x 10(-6) M), reduced contraction and increased the relaxation in response to Ap5A after ischaemia-reperfusion but not under control conditions. CONCLUSION Ischaemia-reperfusion reduces the vasodilatory response to Ap5A and increases the vasoconstriction provoked due to a reduced influence of purinergic P(2Y) receptors and/or to the production of vasoconstrictor prostanoids.
Collapse
Affiliation(s)
- Angel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 2, 28029 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol 2008; 19:863-70. [PMID: 18287557 DOI: 10.1681/asn.2007121377] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reviewing the current picture of uremic toxicity reveals its complexity. Focusing on cardiovascular damage as a model of uremic effects resulting in substantial morbidity and mortality, most molecules with potential to affect the function of a variety of cell types within the vascular system are difficult to remove by dialysis. Examples are the larger middle molecular weight molecules and protein-bound molecules. Recent clinical studies suggest that enhancing the removal of these compounds is beneficial for survival. Future therapeutic options are discussed, including improved removal of toxins and the search for pharmacologic strategies blocking responsible pathophysiologic pathways.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, OK12, University Hospital, De Pintelaan 185, B9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
9
|
Conant AR, Theologou T, Dihmis WC, Simpson AWM. Diadenosine polyphosphates are selective vasoconstrictors in human coronary artery bypass grafts. Vascul Pharmacol 2008; 48:157-64. [PMID: 18325842 DOI: 10.1016/j.vph.2008.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/17/2008] [Indexed: 11/16/2022]
Abstract
Diadenosine polyphosphates (Ap(n)A) are released by degranulating platelets and high, local concentrations may form at sites of platelet activation. Radial artery grafts, now often used alongside the internal mammary artery in coronary artery bypass surgery, are particularly reactive to several vasoconstrictors but the response to Ap(n)A has not been investigated. This study compared the vasoconstrictor activity of Ap(n)A in human radial artery with other vessels commonly used as bypass grafts. Radial artery demonstrated robust concentration-dependent vasoconstriction to Ap(n)A (n=4-6) at concentrations in the micromolar range. In contrast, average responses in internal mammary artery were negligible. Cross-desensitization revealed that Ap(n)A-mediated vasoconstriction occurred via an alphabetamethyleneATP-sensitive receptor. Responses to both Ap(5)A and alphabetamethyleneATP were inhibited by suramin but were insensitive to the P2X(1) receptor antagonist 8,8'-[Carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid (NF279). Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) enhanced responses to Ap(5)A. Similar responses were obtained in saphenous vein. In conclusion, diadenosine polyphosphates contract radial artery and saphenous vein by an as yet uncharacterized P2X receptor but have only limited activity in internal mammary artery. The selective activity of diadenosine polyphosphates in radial artery would implicate them as potential mediators of post-operative contraction in this graft.
Collapse
Affiliation(s)
- Alan R Conant
- The Cardiothoracic Centre, Liverpool NHS Trust, Thomas Drive, Liverpool L14 3PE, UK.
| | | | | | | |
Collapse
|
10
|
Ahmadibeni Y, Parang K. Solid-phase synthesis of symmetrical 5',5'-dinucleoside mono-, di-, tri-, and tetraphosphodiesters. Org Lett 2007; 9:4483-6. [PMID: 17915884 DOI: 10.1021/ol7018778] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four classes of phosphitylating reagents were subjected to reactions with aminomethyl polystyrene resin-bound p-acetoxybenzyl alcohol to yield the corresponding polymer-bound mono-, di-, tri-, and tetraphosphitylating reagents. The solid-phase reagents were reacted with unprotected nucleosides (e.g., thymidine, adenosine, 3'-azido-3'-deoxythymidine, cytidine, or inosine) in the presence of 5-(ethylthio)-1H-tetrazole. Polymer-bound nucleosides underwent oxidation with tert-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and the acidic cleavage, respectively, to afford 5',5'-dinucleoside mono-, di-, tri-, and tetraphosphodiesters in 59-78% yield.
Collapse
Affiliation(s)
- Yousef Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | |
Collapse
|
11
|
Abstract
[reaction: see text] We report a one-flask route for the synthesis of dinucleoside tetra- and pentaphosphates, in isolated yields of 50-85%. This route relies on a mixture of P(III) and P(V) chemistries, using phosphitylation of a protected nucleoside with 2-chloro-4H-l,3,2-benzo-dioxaphosphorin-4-one (salicylchlorophosphite), followed by sequential reaction with inorganic pyrophosphate and a nucleoside 5' mono- or diphosphate.
Collapse
Affiliation(s)
- Qianwei Han
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, 08854, USA
| | | | | |
Collapse
|
12
|
Campiglio M, Bianchi F, Andriani F, Sozzi G, Tagliabue E, Ménard S, Roz L. Diadenosines as FHIT-ness instructors. J Cell Physiol 2006; 208:274-81. [PMID: 16547961 DOI: 10.1002/jcp.20633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FHIT is a tumor suppressor gene that is frequently inactivated in human cancer. Although the Fhit protein is known to hydrolyze diadenosine triphosphate (Ap(3)A), this hydrolase activity is not required for Fhit-mediated oncosuppression. Indeed, the molecular mechanisms and the regulatory elements of Fhit oncosuppression are largely unknown. Here, we review physiological and pathological aspects of Fhit in the context of the Ap(n)A family of signaling molecules, as well as the involvement of Fhit in apoptosis and the cell cycle in cancer models. We also discuss recent findings of novel Fhit interactions that may lead to new hypotheses about biochemical mechanisms underlying the oncosuppressor activity of this gene.
Collapse
Affiliation(s)
- Manuela Campiglio
- Department of Experimental Oncology, Molecular Biology Unit, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Szczepańska-Konkel M, Jankowski M, Stiepanow-Trzeciak A, Angielski S. Effects of diadenosine polyphosphates on glomerular volume. Br J Pharmacol 2005; 144:1109-17. [PMID: 15711587 PMCID: PMC1576094 DOI: 10.1038/sj.bjp.0706149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Diadenosine polyphosphates (P(1),P(3)-diadenosine triphosphate, Ap(3)A; P(1),P(4)-diadenosine tetraphosphate, Ap(4)A; and P(1),P(5)-diadenosine pentaphosphate, Ap(5)A) are vasoactive molecules. The experimental model of isolated rat renal glomeruli was used to investigate their effects on glomerular vasculature. We measured the changes of glomerular inulin space (GIS) as a marker of glomeruli contractility. 2. Ap(4)A and Ap(5)A induced concentration- and time-dependent reduction of GIS whereas Ap(3)A had no effect. The effects of Ap(4)A and Ap(5)A (both at 1 microM) were prevented by a nonselective P2 receptor antagonist, that is, suramin (10 microM) and P2Y receptor antagonist - reactive blue 2 (50 microM). However, the antagonist of P1 receptor, that is, theophylline (1 microM) and A(1) receptor 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 microM) did not affect the responses of glomeruli to Ap(4)A or Ap(5)A. 3. Ap(3)A, in contrast to Ap(4)A and Ap(5)A, prevented angiotensin II-induced reduction of GIS in a concentration- and time-dependent manner. This effect was partially prevented by suramin and markedly reduced by reactive blue 2 and the specific antagonist of P2Y(1) receptor - MRS 2179 (10 microM). However, theophylline and the specific antagonist of A(2) receptor - 3,7-dimethyl-1-propargylxanthine (DMPX; 10 microM) - did not affect Ap(3)A action. 4. We indicate that diadenosine polyphosphates changed the glomerular volume via activation of P2 receptors. We suggest that extracellular Ap(4)A and Ap(5)A via P2X and P2Y receptors may decrease and Ap(3)A via, at least in part, P2Y(1) receptors may increase filtration surface, which in turn may modify glomerular filtration rate.
Collapse
Affiliation(s)
- Miroslawa Szczepańska-Konkel
- Laboratory of Monitoring Therapy and Pharmacogenetics, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
- Laboratory of Cellular and Molecular Nephrology, Medical Research Centre of the Polish Academy of Science, Poland
| | - Maciej Jankowski
- Laboratory of Monitoring Therapy and Pharmacogenetics, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
- Laboratory of Cellular and Molecular Nephrology, Medical Research Centre of the Polish Academy of Science, Poland
- Author for correspondence:
| | - Anna Stiepanow-Trzeciak
- Laboratory of Monitoring Therapy and Pharmacogenetics, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Cellular and Molecular Nephrology, Medical Research Centre of the Polish Academy of Science, Poland
| |
Collapse
|
14
|
Steinmetz M, Van Le T, Bierer S, De Mey JGR, Schlatter E. Prior vasorelaxation enhances diadenosine polyphosphate-induced contractility of rat mesenteric resistance arteries. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:359-63. [PMID: 15997394 DOI: 10.1007/s00210-005-1059-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Low-threshold concentrations of diadenosine polyphosphates (ApnA: Ap3A, Ap4A, Ap5A, Ap6A) or ATP, which at basal vessel tone induce just measurable vasoconstrictions, induce up to ten times enhanced vasoconstrictions of previously relaxed (by acetylcholine or sodium nitroprusside or 8Br2 cGMP or isoproterenol or levcromakalim) pre-contracted rat mesenteric resistance arteries (MrA) in a microvessel-myograph. These enhanced vasoconstrictions were of similar magnitude for threshold concentrations of all ApnA.Possibly, the low concentrations of ApnA reverse the prior vasorelaxation by inhibiting a common vasorelaxation pathway, but obviously this is not due to inhibition of guanylate cyclase, which has been previously described to be inhibited by ApnA, because the enhanced vasoconstrictions can be observed with guanylate cyclase-independent vasorelaxants (8Br2 cGMP, isoproterenol or levcromakalim), too. The enhanced vasoconstrictions are endothelium-independent because after mechanical vascular de-endothelialization the results were identical. De-endothelialized vessels, which fail to relax by acetylcholine, showed no enhanced ApnA-induced vasoconstrictions, demonstrating that the mere prior vasorelaxation of the vessel is required to provide the enhanced vasoconstriction by ApnA. Furthermore, the enhanced contractility is not based on a potentiation of the phenylephrine contraction because it equally occurs with other agents used for arterial pre-contraction. Systemically applied ApnA considerably decrease arteriovascular resistance, resulting in hypotension. But here it is demonstrated that a preceding vasorelaxation enables the resistance arteries to generate a strong and persistent ApnA-induced vasoconstriction. Thus, in vivo at very low concentrations ApnA may serve to counteract severe conditions of hypotension (e.g., shock syndrome or anaphylaxis) by the constriction of resistance arteries.
Collapse
Affiliation(s)
- Martin Steinmetz
- Department of Internal Medicine D, Experimental Nephrology, University of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
15
|
Steinmetz M, Gabriëls G, Le TV, Piechota HJ, Rahn KH, Schlatter E. Vasoactivity of diadenosine polyphosphates in human small renal resistance arteries. Nephrol Dial Transplant 2004; 18:2496-504. [PMID: 14605271 DOI: 10.1093/ndt/gfg405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We examined for the first time the vascular effects of purinergic agents that contribute to the regulation of peripheral vascular resistance in human small renal resistance arteries (hRRAs). METHODS AND RESULTS Diadenosine polyphosphates (ApnAs, n = 3-6) and ATP, mounted in a microvessel myograph, caused vasoconstriction in hRRAs (rank order of potency: Ap5A > Ap6A = Ap4A > Ap3A = ATP). ADP, AMP and adenosine had less contractile potency than ApnA, suggesting that the observed effects were not induced by ApnA degradation products. The ApnA agent, Ap5A, but not Ap4A, induced vasoconstrictions that were inhibited by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; a P2X purinoceptor antagonist), but not by ADP3'5' (a P2Y purinoceptor antagonist). In pre-contracted hRRAs, all of the ApnA agents caused vasorelaxation, and the potencies did not differ from each other. The ApnA degradation products had less vasorelaxing potencies than ApnA, suggesting that the vasorelaxation was caused by the ApnA agents themselves. Ap4A-induced vasorelaxation was inhibited by ADP3'5' and PPADS. In contrast, Ap5A-induced vasorelaxation was not antagonized by ADP3'5', but was antagonized more strongly by PPADS than was Ap4A. CONCLUSIONS We found that the tone of resistance arteries in human kidneys can be considerably influenced by these purinergic agonists, and most potently by ApnAs. Ap5A-induced vasoconstriction appeared to be mediated by P2X purinoceptors, whereas constriction due to Ap4A was caused by a different purinoceptor. Vasorelaxation due to Ap4A, but not Ap5A, appeared to be mediated by P2Y purinoceptors.
Collapse
Affiliation(s)
- Martin Steinmetz
- Department of Internal Medicine D, Nephrology and Experimental Nephrology, University Hospital Münster, Albert-Schweitzer-Strasse 33, D-48129 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H. Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2971-8. [PMID: 12846830 DOI: 10.1046/j.1432-1033.2003.03674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diadenosine polyphosphates (ApnAs) act as extracellular signaling molecules in a broad variety of tissues. They were shown to be hydrolyzed by surface-located enzymes in an asymmetric manner, generating AMP and Apn-1 from ApnA. The molecular identity of the enzymes responsible remains unclear. We analyzed the potential of NPP1, NPP2, and NPP3, the three members of the ecto-nucleotide pyrophosphatase/phosphodiesterase family, to hydrolyze the diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), and diadenosine 5',5"'-P1,P5-pentaphosphate, (Ap5A), and the diguanosine polyphosphate, diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). Each of the three enzymes hydrolyzed Ap3A, Ap4A, and Ap5A at comparable rates. Gp4G was hydrolyzed by NPP1 and NPP2 at rates similar to Ap4A, but only at half this rate by NPP3. Hydrolysis was asymmetric, involving the alpha,beta-pyrophosphate bond. ApnA hydrolysis had a very alkaline pH optimum and was inhibited by EDTA. Michaelis constant (Km) values for Ap3A were 5.1 micro m, 8.0 micro m, and 49.5 micro m for NPP1, NPP2, and NPP3, respectively. Our results suggest that NPP1, NPP2, and NPP3 are major enzyme candidates for the hydrolysis of extracellular diadenosine polyphosphates in vertebrate tissues.
Collapse
Affiliation(s)
- Petra Vollmayer
- AK Neurochemie, Biozentrum der J. W. Goethe-Universitaet, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|