1
|
Zeng H, Zhang S, Nie H, Li J, Yang J, Zhuang Y, Huang Y, Zeng M. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorg Chem 2024; 147:107412. [PMID: 38696845 DOI: 10.1016/j.bioorg.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Jiunlong Yang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yingjie Huang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Miao Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| |
Collapse
|
2
|
Berthold D, van Otterlo WAL. Unprecedented Direct Asymmetric Total Syntheses of 5,8'-Naphthylisoquinoline Alkaloids from their Fully Substituted Precursors Employing a Novel Nickel/N,N-ligand-Catalyzed Atroposelective Cross-Coupling Reaction. Chemistry 2023; 29:e202302070. [PMID: 37515575 DOI: 10.1002/chem.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
A general and concise synthetic pathway for the preparation of four different 5,8'-coupled naphthylisoquinoline alkaloids, employing a specially developed nickel/N,N-ligand-catalyzed atroposelective Negishi coupling is reported. In the first reported direct atroposelective coupling of the fully substituted precursors, the naturally occurring cross-coupled products were generally obtained directly in reasonable yields and high enantiomeric purities. For the synthesis of the cross-coupling precursors, we employed a modification of Bringmann's known approach to the dihydroisoquinoline compounds and a newly developed route for the naphthalene building blocks. For the latter 1,8-dioxynaphthalene precursors, our strategy utilized Hartwig's borylation/methylation approach and included the efficient installation of orthogonal protecting groups.
Collapse
Affiliation(s)
- Dino Berthold
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag XI, Matieland, 7602, Stellenbosch, Western Cape, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag XI, Matieland, 7602, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
3
|
Ancistrolikokine I and further 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus likoko and their cytotoxic activities against drug-sensitive and multidrug resistant human leukemia cells. Fitoterapia 2018; 129:114-125. [DOI: 10.1016/j.fitote.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
|
4
|
Abstract
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.
Collapse
Affiliation(s)
| | - Timothy M Dore
- a New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Chemistry , University of Georgia , Athens , GA , USA
| | - Walter K Schmidt
- c Department of Biochemistry & Molecular Biology , University of Georgia , Athens , GA , USA
| |
Collapse
|
5
|
Kumbhar D, Chandam D, Patil R, Jadhav S, Patil D, Patravale A, Deshmukh M. Synthesis and Antimicrobial Activity of Novel Derivatives of 7-aryl-10-thioxo-7, 10, 11, 12 - tertahydro-9H
-benzo[H
] pyrimido [4,5-b
] quinoline-8-one. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Digambar Kumbhar
- Department of Agrochemicals and Pest Management; Shivaji University; Kolhapur Maharashtra India
| | - Dattatray Chandam
- Department of Chemistry; Bhogawati Mahavidyalaya; Kurukali Kolhapur Maharashtra India
| | - Reshma Patil
- Department of Agrochemicals and Pest Management; Shivaji University; Kolhapur Maharashtra India
| | - Sunetra Jadhav
- Department of Agrochemicals and Pest Management; Shivaji University; Kolhapur Maharashtra India
| | - Dayanand Patil
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra India
| | - Ajinkya Patravale
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra India
| | - Madhukar Deshmukh
- Department of Agrochemicals and Pest Management; Shivaji University; Kolhapur Maharashtra India
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra India
| |
Collapse
|
6
|
Honma M, Stubbs M, Collins I, Workman P, Aherne W, Watt FM. Identification of Novel Keratinocyte Differentiation Modulating Compounds by High-Throughput Screening. ACTA ACUST UNITED AC 2016; 11:977-84. [PMID: 17092913 DOI: 10.1177/1087057106292556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The authors have designed high-throughput screens to identify compounds that promote or inhibit terminal differentiation of primary human epidermal keratinocytes. Eleven known inhibitors of signaling pathways and approximately 4000 compounds of diverse structure were screened using an In-Cell Western system based on immunofluorescent staining of the terminal differentiation marker, involucrin. Staurosporine, a nonspecific protein kinase C inhibitor, and H89, a protein kinase A inhibitor, promoted expression of involucrin. Conversely, U0126, a MEK inhibitor, and SAHA or SBHA, 2 histone deacetylase inhibitors, reduced the expression of involucrin during calcium-induced stratification. In addition, the authors found 1 novel compound that induced keratinocyte differentiation and 2 novel compounds that were inhibitory to calcium-induced differentiation. The differentiation-inducing compound also inhibited growth of a human squamous cell carcinoma line by stimulating both differentiation and apoptosis. Because the compound affected the tumor cells at a lower concentration than primary keratinocytes, it may have potential as an antitumor therapy.
Collapse
Affiliation(s)
- Masaru Honma
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, London
| | | | | | | | | | | |
Collapse
|
7
|
Hemberger Y, Zhang G, Brun R, Kaiser M, Bringmann G. Highly antiplasmodial non-natural oxidative products of dioncophylline A: synthesis, absolute configuration, and conformational stability. Chemistry 2015; 21:14507-18. [PMID: 26272344 DOI: 10.1002/chem.201501657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/11/2022]
Abstract
Four new compounds, the monomeric dioncotetralones A (6 a) and B (6 b) and the dimeric compounds jozimine A3 (7) and jozimine A4 (9), were semi-synthesized from the natural product dioncophylline A (4) and its 5'-O-demethylated derivative (5), respectively, under phenol oxidative reaction conditions. Dioncotetralones A (6 a) and B (6 b) possess an unprecedented Z-configured double bond, in contrast to the classic biaryl axis that is present in the precursor dioncophylline A (4), and an additional stereogenic center at the C2' atom was generated due to the dearomatization. The resulting steric repulsion forced the expected planar double bond into a helical distorted conformation. The homocoupling of 5 yielded compounds 7 and 9, the latter of which is the first sp(3) -sp(2) coupled product of a monomeric naphthylisoquinoline with a reduced one and, thus, contains a newly generated stereogenic center. The full stereostructures of 6 a, 6 b, 7, and 9 were successfully elucidated by the interplay of spectroscopic methods (1D/2D NMR and electronic circular-dichroism spectroscopy) in combination with quantum-chemical calculations. In addition, compounds 6 a and 7 exhibited high antiplasmodial activities with excellent half-maximal inhibitory concentration values.
Collapse
Affiliation(s)
- Yasmin Hemberger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | - Guoliang Zhang
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel (Switzerland) and University of Basel, Petersplatz 1, 4003 Basel (Switzerland)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel (Switzerland) and University of Basel, Petersplatz 1, 4003 Basel (Switzerland)
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg (Germany).
| |
Collapse
|
8
|
|
9
|
Parameswaran K, Sivaguru P, Lalitha A. Synthesis of novel bis(pyrimido[5,4-c]quinoline-2,4(1H,3H)-dione) and its derivatives: Evaluation of their antioxidant properties. Bioorg Med Chem Lett 2013; 23:3873-8. [DOI: 10.1016/j.bmcl.2013.04.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/16/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
10
|
McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PCF. Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 2013; 168:172-88. [PMID: 22889062 PMCID: PMC3570013 DOI: 10.1111/j.1476-5381.2012.02134.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 07/04/2012] [Accepted: 07/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple antibiotic resistant strains of plague are emerging, driving a need for the development of novel antibiotics effective against Yersinia pestis. DNA adenine methylation regulates numerous fundamental processes in bacteria and alteration of DNA adenine methlytransferase (Dam) expression is attenuating for several pathogens, including Y. pestis. The lack of a functionally similar enzyme in humans makes Dam a suitable target for development of novel therapeutics for plague. EXPERIMENTAL APPROACH Compounds were evaluated for their ability to inhibit Dam activity in a high-throughput screening assay. DNA was isolated from Yersinia grown in the presence of lead compounds and restricted to determine the effect of inhibitors on DNA methylation. Transcriptional analysis was undertaken to determine the effect of an active inhibitor on virulence-associated phenotypes. KEY RESULTS We have identified a series of aryl stibonic acids which inhibit Dam in vitro. The most active, 4-stibonobenzenesulfonic acid, exhibited a competitive mode of inhibition with respect to DNA and a K(i) of 6.46 nM. One compound was found to inhibit DNA methylation in cultured Y. pestis. The effects of this inhibition on the physiology of the cell were widespread, and included altered expression of known virulence traits, including iron acquisition and Type III secretion. CONCLUSIONS AND IMPLICATIONS We have identified a novel class of potent Dam inhibitors. Treatment of bacterial cell cultures with these inhibitors resulted in a decrease in DNA methylation. Expression of virulence factors was affected, suggesting these inhibitors may attenuate bacterial infectivity and function as antibiotics.
Collapse
Affiliation(s)
- J C McKelvie
- School of Chemistry, University of Southampton, UK
| | | | | | | | | | | |
Collapse
|
11
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
12
|
Guo HY, Yu Y. One-pot synthesis of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5-b]quinoline-8,10(7H,9H)-diones via three-component reaction in ionic liquid. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2010.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Manandhar SP, Hildebrandt ER, Jacobsen WH, Santangelo GM, Schmidt WK. Chemical inhibition of CaaX protease activity disrupts yeast Ras localization. Yeast 2010; 27:327-43. [PMID: 20162532 DOI: 10.1002/yea.1756] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins possessing a C-terminal CaaX motif, such as the Ras GTPases, undergo extensive post-translational modification that includes attachment of an isoprenoid lipid, proteolytic processing and carboxylmethylation. Inhibition of the enzymes involved in these processes is considered a cancer-therapeutic strategy. We previously identified nine in vitro inhibitors of the yeast CaaX protease Rce1p in a chemical library screen (Manandhar et al., 2007). Here, we demonstrate that these agents disrupt the normal plasma membrane distribution of yeast GFP-Ras reporters in a manner that pharmacologically phenocopies effects observed upon genetic loss of CaaX protease function. Consistent with Rce1p being the in vivo target of the inhibitors, we observe that compound-induced delocalization is suppressed by increasing the gene dosage of RCE1. Moreover, we observe that Rce1p biochemical activity associated with inhibitor-treated cells is inversely correlated with compound dose. Genetic loss of CaaX proteolysis results in mistargeting of GFP-Ras2p to subcellular foci that are positive for the endoplasmic reticulum marker Sec63p. Pharmacological inhibition of CaaX protease activity also delocalizes GFP-Ras2p to foci, but these foci are not as strongly positive for Sec63p. Lastly, we demonstrate that heterologously expressed human Rce1p can mediate proper targeting of yeast Ras and that its activity can also be perturbed by some of the above inhibitors. Together, these results indicate that disrupting the proteolytic modification of Ras GTPases impacts their in vivo trafficking.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
14
|
Rishi V, Oh WJ, Heyerdahl SL, Zhao J, Scudiero D, Shoemaker RH, Vinson C. 12 Arylstibonic acids that inhibit the DNA binding of five B-ZIP dimers. J Struct Biol 2010; 170:216-25. [PMID: 20176111 DOI: 10.1016/j.jsb.2010.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 01/07/2023]
Abstract
Previously, we identified an arylstibonic acid, NSC13778 that specifically binds to the basic region of the C/EBPalpha B-ZIP domain and disrupts DNA binding. We now examine a panel of 14 additional arylstibonic acid derivatives of NSC13778 for their ability to inhibit the DNA binding of five B-ZIP dimers (c-Fos|JunD, VBP, C/EBPalpha, C/EBPbeta, and CREB). They show various specificities at inhibiting the DNA binding of five B-ZIP domains. NSC13746 inhibits the DNA binding of C/EBPbeta and CREB at 100nM and promiscuously inhibiting the DNA binding of all five proteins in the 1muM range. Dialysis experiments indicate that NSC 13746 binding to the B-ZIP domain is reversible. Thermal denaturation studies indicate that NSC13746 binds the B-ZIP domain. Some compounds specifically inhibit DNA binding, with VBP and c-Fos|JunD being most easily disrupted. These compounds inhibit, with similar specificities to the pure B-ZIP domains, the DNA binding of nuclear extract to the AP1 DNA sequence but no inhibition is observed to SP1 containing oligonucleotide. Transient transfection assays indicate that NSC13746 can inhibit the TPA induced activation of two B-ZIP dependent reporters. These experiments suggest that arylstibonic acids are promising leads for inhibiting the DNA binding of a group of B-ZIP proteins in cells.
Collapse
Affiliation(s)
- Vikas Rishi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37, Room 3128, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Shi F, Yan S, Zhou D, Tu S, Zou X, Hao W, Zhang X, Han Z, Wu S, Cao X. A facile and efficient synthesis of novel pyrimido[5,4-b][4,7]phenanthroline-9,11(7H,8H,10H,12H)-dione derivativesviamicrowave-assisted multicomponent reactions. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Kovač A, Konc J, Vehar B, Bostock JM, Chopra I, Janežič D, Gobec S. Discovery of New Inhibitors of d-Alanine:d-Alanine Ligase by Structure-Based Virtual Screening. J Med Chem 2008; 51:7442-8. [DOI: 10.1021/jm800726b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreja Kovač
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Janez Konc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Blaž Vehar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Julieanne M. Bostock
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Ian Chopra
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Dušanka Janežič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, and Institute of Molecular and Cellular Biology and Antimicrobial Research Centre, University of Leeds, Leeds LS 9JT, U.K
| |
Collapse
|
17
|
Kim H, Cardellina JH, Akee R, Champoux JJ, Stivers JT. Arylstibonic acids: novel inhibitors and activators of human topoisomerase IB. Bioorg Chem 2008; 36:190-7. [PMID: 18508107 DOI: 10.1016/j.bioorg.2008.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/19/2022]
Abstract
Human topoisomerase IB (hTopo) forms a covalent phosphotyrosyl linkage with the DNA backbone, and controls genomic DNA topology by relaxing DNA supercoils during the processes of DNA replication, transcription, chromosome condensation and decondensation. The essential role of hTopo in these processes has made it a preeminent anticancer drug target. We have screened a small library of arylstibonic acids for their effects on plasmid supercoil relaxation catalyzed by hTopo. Despite the similar structures of the library compounds, some compounds were found to be effective competitive inhibitors, and others, nonessential activators. Some arylstibonic acids show selectivity in their action against hTopo and the related enzyme from poxvirus (vTopo). Structure-activity relationships and structural modeling suggest that competitive inhibition may result from positioning of the negatively charged stibonic acid and carboxylate groups of the inhibitors into DNA phosphate binding pockets on hTopo. The hTopo activators act by a surprising allosteric mechanism without interfering with DNA binding or binding of the widely used hTopo poison camptothecin. Arylstibonic acid competitive inhibitors may become useful small molecules for elucidating the cellular functions of hTopo.
Collapse
Affiliation(s)
- Hyeongnam Kim
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | |
Collapse
|
18
|
Manandhar SP, Hildebrandt ER, Schmidt WK. Small-molecule inhibitors of the Rce1p CaaX protease. ACTA ACUST UNITED AC 2008; 12:983-93. [PMID: 17942791 DOI: 10.1177/1087057107307226] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC(50) values of these 9 compounds were in the low micromolar range for both yeast (6-35 microM) and human Rce1p (0.4-46 microM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
19
|
Seiple LA, Cardellina JH, Akee R, Stivers JT. Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol Pharmacol 2007; 73:669-77. [PMID: 18042731 DOI: 10.1124/mol.107.042622] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human apurinic/apyrimidinic endonuclease (Ape1) plays an important role by processing the >10,000 highly toxic abasic sites generated in the genome of each cell every day. Ape1 has recently emerged as a target for inhibition, in that its overexpression in tumors has been linked with poor response to both radiation and chemotherapy and lower overall patient survival. Inhibition of Ape1 using siRNA or the expression of a dominant-negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. However, potent small-molecule inhibitors of Ape1 remain to be found. To this end, we screened Ape1 against the NCI Diversity Set of small molecules and discovered aromatic nitroso, carboxylate, sulfonamide, and arylstibonic acid compounds with micromolar affinities for the protein. A further screen of a 37-compound arylstibonic acid sublibrary identified ligands with IC(50) values in the range of 4 to 300 nM. The negatively charged stibonic acids act by a partial-mixed mode and probably serve as DNA phosphate mimics. These compounds provide a useful scaffold for development of chemotherapeutic agents against Ape1.
Collapse
Affiliation(s)
- Lauren A Seiple
- The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore MD 21205-2185, USA
| | | | | | | |
Collapse
|
20
|
Sliva K, Schnierle B. From actually toxic to highly specific--novel drugs against poxviruses. Virol J 2007; 4:8. [PMID: 17224068 PMCID: PMC1781423 DOI: 10.1186/1743-422x-4-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/15/2007] [Indexed: 01/13/2023] Open
Abstract
The potential use of variola virus, the causative agent of smallpox, as a bioweapon and the endemic presence of monkeypox virus in Africa demonstrate the need for better therapies for orthopoxvirus infections. Chemotherapeutic approaches to control viral infections have been less successful than those targeting bacterial infections. While bacteria commonly reproduce themselves outside of cells and have metabolic functions against which antibiotics can be directed, viruses replicate in the host cells using the cells' metabolic pathways. This makes it very difficult to selectively target the virus without damaging the host. Therefore, the development of antiviral drugs against poxviruses has initially focused on unique properties of the viral replication cycle or of viral proteins that can be selectively targeted. However, recent advances in molecular biology have provided insights into host factors that represent novel drug targets. The latest anti-poxvirus drugs are kinase inhibitors, which were originally developed to treat cancer progression but in addition block egress of poxviruses from infected cells. This review will summarize the current understanding of anti-poxvirus drugs and will give an overview of the development of the latest second generation poxvirus drugs.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51–59, 63225 Langen, Germany
| | - Barbara Schnierle
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51–59, 63225 Langen, Germany
| |
Collapse
|
21
|
Hwang Y, Minkah N, Perry K, Van Duyne GD, Bushman FD. Regulation of catalysis by the smallpox virus topoisomerase. J Biol Chem 2006; 281:38052-60. [PMID: 17032643 DOI: 10.1074/jbc.m608858200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poxvirus type IB topoisomerases catalyze relaxation of supercoiled DNA by cleaving and rejoining DNA strands via a pathway involving a covalent phosphotyrosine intermediate. Recently we determined structures of the smallpox virus topoisomerase bound to DNA in covalent and non-covalent DNA complexes using x-ray crystallography. Here we analyzed the effects of twenty-two amino acid substitutions on the topoisomerase activity in vitro in assays of DNA relaxation, single cycle cleavage, and equilibrium cleavage-religation. Alanine substitutions at 14 positions impaired topoisomerase function, marking a channel of functionally important contacts along the protein-DNA interface. Unexpectedly, alanine substitutions at two positions (D168A and E124A) accelerated the forward rate of cleavage. These findings and further analysis indicate that Asp(168) is a key regulator of the active site that maintains an optimal balance among the DNA cleavage, religation, and product release steps. Finally, we report that high level expression of the D168A topoisomerase in Escherichia coli, but not other alanine-substituted enzymes, prevented cell growth. These findings help elucidate the amino acid side chains involved in DNA binding and catalysis and provide guidance for designing topoisomerase poisons for use as smallpox antivirals.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Catalysis
- Catalytic Domain/genetics
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Escherichia coli/genetics
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Variola virus/enzymology
- Variola virus/genetics
Collapse
Affiliation(s)
- Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
22
|
Perry K, Hwang Y, Bushman FD, Van Duyne GD. Structural basis for specificity in the poxvirus topoisomerase. Mol Cell 2006; 23:343-54. [PMID: 16885024 DOI: 10.1016/j.molcel.2006.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/02/2006] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Although smallpox has been eradicated from the human population, it is presently feared as a possible agent of bioterrorism. The smallpox virus codes for its own topoisomerase enzyme that differs from its cellular counterpart by requiring a specific DNA sequence for activation of catalysis. Here we present crystal structures of the smallpox virus topoisomerase enzyme bound both covalently and noncovalently to a specific DNA sequence. These structures reveal the basis for site-specific DNA recognition, and they explain how catalysis is likely activated by formation of a specific enzyme-DNA interface. Unexpectedly, the poxvirus enzyme uses a major groove binding alpha helix that is not present in the human enzyme to recognize part of the core recognition sequence and activate the enzyme for catalysis. The topoisomerase-DNA complex structures also provide a three-dimensional framework that may facilitate the rational design of therapeutic agents to treat poxvirus infections.
Collapse
Affiliation(s)
- Kay Perry
- University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
23
|
Fujimoto DF, Pinilla C, Segall AM. New peptide inhibitors of type IB topoisomerases: similarities and differences vis-a-vis inhibitors of tyrosine recombinases. J Mol Biol 2006; 363:891-907. [PMID: 16996084 PMCID: PMC1876744 DOI: 10.1016/j.jmb.2006.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/20/2006] [Accepted: 08/21/2006] [Indexed: 11/20/2022]
Abstract
Topoisomerases relieve topological tension in DNA by breaking and rejoining DNA phosphodiester bonds. Type IB topoisomerases such as vaccinia topoisomerase (vTopo) and human topoisomerase I are structurally and mechanistically similar to the tyrosine recombinase family of enzymes, which includes bacteriophage lambda Integrase (Int). Previously, our laboratory identified peptide inhibitors of Int from a synthetic peptide combinatorial library. The most potent of these peptides also inhibit vTopo. Here, we used the same mixture-based screening procedure to identify peptide inhibitors directly against vTopo using a plasmid relaxation assay. The two most potent new peptides identified, WYCRCK and KCCRCK, inhibit plasmid relaxation, DNA cleavage and Holliday junction (HJ) resolution mediated by vTopo. The peptides tested bind double-stranded DNA at high concentrations but do not appear to displace the enzyme from its DNA substrate. WYCRCK binds specifically to HJ and perturbs the central base-pairing. This peptide also accumulates HJ intermediates when it inhibits Int-mediated recombination, whereas KCCRCK does not. Interestingly, WYCRCK shares four amino acids with a peptide identified against Int, WRWYCR. The octapeptide WRWYCRCK, containing amino acids from both hexapeptides, is more potent than either against vTopo. All peptides are less potent against the type IA Escherichia coli topoisomerase I or against restriction endonucleases. Like the Int-inhibitory peptide WRWYCR, WYCRCK binds to HJs, and both inhibit junction resolution by vTopo. Our results suggest that the newly identified WYCRCK and peptide WRWYCR interact with a distorted DNA intermediate arising during vTopo-mediated catalysis, or interfere with specific interactions between vTopo and DNA.
Collapse
Affiliation(s)
- David F Fujimoto
- Department of Biology, Center for Microbial Sciences and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | |
Collapse
|