1
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sun L, Malén T, Tuisku J, Kaasinen V, Hietala JA, Rinne J, Nuutila P, Nummenmaa L. Seasonal variation in D2/3 dopamine receptor availability in the human brain. Eur J Nucl Med Mol Imaging 2024; 51:3284-3291. [PMID: 38730083 PMCID: PMC11369044 DOI: 10.1007/s00259-024-06715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.
Collapse
Affiliation(s)
- Lihua Sun
- Huashan Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Turku PET Centre, University of Turku, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku University Hospital, Neurocenter, Turku, Finland
| | - Jarmo A Hietala
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Kurban N, Qin Y, Zhao HL, Hu X, Chen X, Zhao YY, Peng YS, Wang HB, Cui SY, Zhang YH. Chronic Stress-Induced Elevation of Melanin-Concentrating Hormone in the Locus Coeruleus Inhibits Norepinephrine Production and Associated With Depression-Like Behaviors in Rats. Int J Neuropsychopharmacol 2024; 27:pyad069. [PMID: 38135278 PMCID: PMC10799331 DOI: 10.1093/ijnp/pyad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine β hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.
Collapse
Affiliation(s)
- Nurhumar Kurban
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu Qin
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Hui-Ling Zhao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiao Hu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xi Chen
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yi-Yi Zhao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu-Shuo Peng
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Hong-Bo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| |
Collapse
|
4
|
Essam RM, Kandil EA. p-CREB and p-DARPP-32 orchestrating the modulatory role of cAMP/PKA signaling pathway enhanced by Roflumilast in rotenone-induced Parkinson's disease in rats. Chem Biol Interact 2023; 372:110366. [PMID: 36706892 DOI: 10.1016/j.cbi.2023.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza, 3296121, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
6
|
Liu X, Zhou Y, Li S, Yang D, Jiao M, Liu X, Wang Z. Type 3 adenylyl cyclase in the main olfactory epithelium participates in depression-like and anxiety-like behaviours. J Affect Disord 2020; 268:28-38. [PMID: 32158004 DOI: 10.1016/j.jad.2020.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deficiency of olfaction is thought to be associated with depression, and type 3 adenylyl cyclase (AC3) genetic knockout and forebrain knockout mice show depression-like behaviours. AC3 is expressed in the main olfactory epithelium (MOE) and hippocampus, which plays an important role in olfactory signal transduction. However, it is unclear whether AC3 in the MOE also plays a role in the pathogenesis of depression. Thus, we aimed to study the relationship between AC3 in the MOE and the pathogenesis of depression. METHODS We obtained anosmic mice by intranasal perfusion of zinc sulphate (ZnSO4) (ZnSO4 mice), and distinctively knocked down AC3 in the MOE (AC3KD/MOE mice) by CRISPR/cas9 technology. Behavioural tests related to depression and anxiety were employed to evaluate the depression- and anxiety-like behaviours of mice. The mRNA and protein expressions of tyrosine hydroxylase (TH), dopamine receptors (Drds), and N-Methyl D-aspartate receptor subunit 2B (GluN2B) in the hippocampus of mice were investigated by qPCR and western blotting to explore the mechanism of depression and anxiety caused by AC3 in the MOE, preliminarily. RESULTS Compared with NaCl mice, ZnSO4 mice exhibited depression-like behaviours in tail suspension tests (TST), forced swimming tests, and social (FST) interaction tests (SIT), but showed no anxiety-like behaviours in anxiety-related behavioural tests. The mRNA and protein expressions of Drd3 and GluN2B in the hippocampus of ZnSO4 mice were significantly downregulated. Compared with the negative control mice (NC mice), AC3KD / MOE mice showed depression-like behaviours in TST, FST, and SIT tests, anxiety-like behaviours in light/dark transition test, elevated-plus maze test, and novelty-suppressed feeding test. The protein expressions of Drd3, TH, and GluN2B were significantly downregulated in the hippocampus. LIMITATIONS We did not further demonstrate that AC3 in the MOE causes depression through the dopaminergic nervous system with dopamine or dopamine receptor agonists. CONCLUSIONS Our data demonstrate that intranasal infusion of ZnSO4 can cause depression-like behaviours and has no effect on anxiety-like behaviours. Specific knockdown of AC3 in the MOE can cause depression-like and anxiety-like behaviours. The behavioural changes caused by intranasal ZnSO4 and specific knockdown of AC3 in the MOE can be related to the significant downregulation of dopaminergic system and GluN2B expressions in the hippocampus of mice.
Collapse
Affiliation(s)
- Xinxia Liu
- College of Life Science, Hebei University, Baoding, 071002, China; Medical College, Hebei University, 071000 Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Shujuan Li
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Dong Yang
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Mingming Jiao
- Medical College, Hebei University, 071000 Baoding, China
| | - Xiaodong Liu
- Medical College, Hebei University, 071000 Baoding, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Stathakos P, Jiménez-Moreno N, Crompton LA, Nistor PA, Badger JL, Barbuti PA, Kerrigan TL, Randall AD, Caldwell MA, Lane JD. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons. Autophagy 2020; 17:855-871. [PMID: 32286126 PMCID: PMC8078667 DOI: 10.1080/15548627.2020.1739441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.
Collapse
Affiliation(s)
- Petros Stathakos
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK.,Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Lucy A Crompton
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul A Nistor
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jennifer L Badger
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter A Barbuti
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Talitha L Kerrigan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK.,Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Maeve A Caldwell
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Aschrafi A, Berndt A, Kowalak JA, Gale JR, Gioio AE, Kaplan BB. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine β-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem 2019; 150:666-677. [PMID: 31306490 PMCID: PMC7164330 DOI: 10.1111/jnc.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
In the sympatho-adrenal system, angiotensin II (Ang II) acts as a key neuromodulatory component. At sympathetic nerve terminals, Ang II influences sympathetic transmission by enhancing norepinephrine (NE) synthesis, facilitating NE release and inhibiting NE uptake. Previously, it was demonstrated that tyrosine hydroxylase (TH) mRNA is trafficked to the distal axons of primary superior cervical ganglia (SCG) neurons, directed by a cis-acting regulatory element (i.e. zipcode) located in the 3'UTR of the transcript. Results of metabolic labeling studies established that the mRNA is locally translated. It was further shown that the axonal trafficking of the mRNA encoding the enzyme plays an important role in mediating dopamine (DA) and NE synthesis and may facilitate the maintenance of axonal catecholamine levels. In the present study, the hypothesis was tested that Ang II induces NE synthesis in rat primary SCG neurons via the modulation of the trafficking of the mRNAs encoding the catecholamine synthesizing enzymes TH and dopamine β-hydroxylase (DBH). Treatment of SCG neurons with the Ang II receptor type 1 (AT1R) agonist, L-162,313, increases the axonal levels of TH and DBH mRNA and protein and results in elevated NE levels. Conversely, treatment of rat SCG neurons with the AT1R antagonist, Eprosartan, abolished the L-162,313-mediated increase in axonal levels of TH and DBH mRNA and protein. In a first attempt to identify the proteins involved in the Ang II-mediated axonal transport of TH mRNA, we used a biotinylated 50-nucleotide TH RNA zipcode as bait in the affinity purification of TH zipcode-associated proteins. Mass spectrometric analysis of the TH zipcode ribonucleoprotein (RNP) complex immune-purified from SCG neurons led to the identification of 163 somal and 127 axonal proteins functionally involved in binding nucleic acids, the translational machinery or acting as subunits of cytoskeletal and motor proteins. Surprisingly, immune-purification of the TH axonal trafficking complex, results in the acquisition of DBH mRNA, suggesting that these mRNAs maybe transported to the axon together, possibly in the same RNP complex. Taken together, our results point to a novel mechanism by which Ang II participates in the regulation of axonal synthesis of NE by modulating the local trafficking and expression of TH and DBH, two key enzymes involved in the catecholamine biosynthetic pathway.
Collapse
Affiliation(s)
| | | | | | - Jenna R Gale
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony E Gioio
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barry B Kaplan
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Anokhin PK, Razumkina EV, Shamakina IY. A Comparison of mRNA Expression of Dopamine Receptors, Tyrosine Hydroxylase, and Dopamine Transporter in the Mesolimbic System of Rats with Different Levels of Alcohol Consumption. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
COA-Cl induces dopamine release and tyrosine hydroxylase phosphorylation: In vivo reverse microdialysis and in vitro analysis. Brain Res 2019; 1706:68-74. [PMID: 30366020 DOI: 10.1016/j.brainres.2018.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022]
Abstract
We found that local perfusion of COA-Cl (0.1, 0.4, or 1.0 mM) into the dorsal striatum of living mice produced a significant and dose-dependent increase in extracellular DA levels, with the highest dose of 1.0 mM COA-Cl producing an approximately 5-fold increase in DA. Consistent with in vivo findings, 0.1 and 0.2 mM COA-Cl significantly and dose-dependently enhanced DA release 3.0 to 5.0-fold in PC12 cells, an in vitro model of DA-responsive neurons. Interestingly, the increase in striatal DA levels by COA-Cl in vivo was similar in magnitude to that observed in PC12 cells. Treatment with 0.1 mM COA-Cl significantly increased both Ser31 and Ser40 phosphorylation of tyrosine hydroxylase (TH) in PC12 cells, and Ser40 phosphorylation in iCell neurons, without altering total TH protein levels. Further, we examined whether COA-Cl could stimulate neurite outgrowth in PC12 cells and iCell neurons and found that COA-Cl significantly induced neurite outgrowth in both cell lines. Our results provide the first evidence that COA-Cl can stimulate dose-dependent DA release and activation of TH phosphorylation, suggesting that COA-Cl may be a promising therapeutic candidate for the treatment of neurological dysfunction associated with low DA.
Collapse
|
11
|
Firmani LD, Uliasz TF, Mehlmann LM. The switch from cAMP-independent to cAMP-dependent arrest of meiotic prophase is associated with coordinated GPR3 and CDK1 expression in mouse oocytes. Dev Biol 2017; 434:196-205. [PMID: 29274320 DOI: 10.1016/j.ydbio.2017.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are arrested in meiotic prophase from around the time of birth until just before ovulation. Following an extended period of growth, they are stimulated to mature to the metaphase II stage by a preovulatory luteinizing hormone (LH) surge that occurs with each reproductive cycle. Small, growing oocytes are not competent to mature into fertilizable eggs because they do not possess adequate amounts of cell cycle regulatory proteins, particularly cyclin-dependent kinase 1 (CDK1). As oocytes grow, they synthesize CDK1 and acquire the ability to mature. After oocytes achieve meiotic competence, meiotic arrest at the prophase stage is dependent on high levels of cAMP that are generated in the oocyte under the control of the constitutively active Gs-coupled receptor, GPR3. In this study, we examined the switch between GPR3-independent and GPR3-dependent meiotic arrest. We found that the ability of oocytes to mature, as well as oocyte CDK1 levels, were dependent on follicle size, but CDK1 expression in oocytes from preantral follicles was not acutely altered by the activity of follicle stimulating hormone (FSH). Gpr3 was expressed and active in incompetent oocytes within early stage follicles, well before cAMP is required to maintain meiotic arrest. Oocytes from Gpr3-/- mice were less competent to mature than oocytes from Gpr3+/+ mice, as assessed by the time course of germinal vesicle breakdown. Correspondingly, Gpr3-/- oocytes contained significantly lower CDK1 levels than their Gpr3+/+ counterparts that were at the same stage of follicle development. These results demonstrate that GPR3 potentiates meiotic competence, most likely by raising cAMP.
Collapse
Affiliation(s)
- Laura D Firmani
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Tracy F Uliasz
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Lisa M Mehlmann
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Disruption of the Axonal Trafficking of Tyrosine Hydroxylase mRNA Impairs Catecholamine Biosynthesis in the Axons of Sympathetic Neurons. eNeuro 2017. [PMID: 28630892 PMCID: PMC5473686 DOI: 10.1523/eneuro.0385-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3'untranslated region (3'UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal.
Collapse
|
13
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Heckman PRA, van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A, Prickaerts J. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. Int J Neuropsychopharmacol 2016; 19:pyw030. [PMID: 27037577 PMCID: PMC5091819 DOI: 10.1093/ijnp/pyw030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.
Collapse
|
15
|
Greenberg GD, Steinman MQ, Doig IE, Hao R, Trainor BC. Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice. Eur J Neurosci 2015; 42:3081-94. [PMID: 26469289 DOI: 10.1111/ejn.13099] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/11/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) have important functions related to rewards but are also activated in aversive contexts. Electrophysiology studies suggest that the degree to which VTA dopamine neurons respond to noxious stimuli is topographically organized across the dorsal-ventral extent. We used c-fos immunohistochemistry to examine the responses of VTA dopamine neurons in contexts of social defeat and social approach. Studying monogamous California mice (Peromyscus californicus) allowed us to observe the effects of social defeat on both males and females. Females exposed to three episodes of defeat, but not a single episode, had more tyrosine hydroxylase (TH)/c-fos-positive cells in the ventral (but not dorsal) VTA compared with controls. This observation suggests that repeated exposure to aversive contexts is necessary to trigger activation of VTA dopamine neurons. Defeat did not affect TH/c-fos colocalizations in males. We also examined the long-term effects of defeat on c-fos expression in a social interaction test. As previously reported, defeat reduced social interaction in females but not males. Surprisingly, there were no effects of defeat stress on TH/c-fos colocalizations in any subregion of the VTA. However, females had more TH/c-fos-positive cells than males across the entire VTA, and also had greater c-fos-positive cell counts in posterior subregions of the nucleus accumbens shell. Our results show that dopamine neurons in the VTA are more responsive to social contexts in females and that the ventral VTA in particular is sensitive to aversive contexts.
Collapse
Affiliation(s)
- Gian D Greenberg
- Neuroscience Graduate Group, University of California, Davis, CA, USA.,Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Center for Neuroscience, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michael Q Steinman
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA, USA
| | - Ian E Doig
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, CA, USA.,Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Center for Neuroscience, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Kudrick N, Chan O, La Gamma EF, Kim JL, Tank AW, Sterling C, Nankova BB. Posttranscriptional regulation of adrenal TH gene expression contributes to the maladaptive responses triggered by insulin-induced recurrent hypoglycemia. Physiol Rep 2015; 3:3/2/e12307. [PMID: 25713330 PMCID: PMC4393213 DOI: 10.14814/phy2.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute metabolic stress such as insulin-induced hypoglycemia triggers a counterregulatory response during which the release of catecholamines (epinephrine), the activation of tyrosine hydroxylase (TH) enzyme and subsequent compensatory catecholamine biosynthesis occur in the adrenal medulla. However, recurrent exposure to hypoglycemia (RH), a consequence of tight glycemic control in individuals with type 1 and type 2 diabetes compromises this physiological response. The molecular mechanisms underlying the maladaptive response to repeated glucose deprivation are incompletely understood. We hypothesize that impaired epinephrine release following RH reflects altered regulation of adrenal catecholamine biosynthesis. To test this hypothesis, we compared the effect of single daily (RH) and twice-daily episodes of insulin-induced hypoglycemia (2RH) on adrenal epinephrine release and production in normal rats. Control animals received saline injections under similar conditions (RS and 2RS, respectively). Following 3 days of treatment, we assessed the counterregulatory hormonal responses during a hypoglycemic clamp. Changes in adrenal TH gene expression were also analyzed. The counterregulatory responses, relative TH transcription and TH mRNA levels and Ser40-TH phosphorylation (marker for enzyme activation) were induced to a similar extent in RS, 2RS, and RH groups. In contrast, epinephrine and glucagon responses were attenuated in the 2RH group and this was associated with a limited elevation of adrenal TH mRNA, rapid inactivation of TH enzyme and no significant changes in TH protein. Our results suggest that novel posttranscriptional mechanisms controlling TH mRNA and activated TH enzyme turnover contribute to the impaired epinephrine responses and may provide new therapeutic targets to prevent HAAF.
Collapse
Affiliation(s)
- Necla Kudrick
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale School of Medicine, New Haven, Connecticut
| | - Edmund F La Gamma
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Juhye Lena Kim
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Arnold William Tank
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Carol Sterling
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Bistra B Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
17
|
Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain. Neuroscience 2015; 286:1-12. [DOI: 10.1016/j.neuroscience.2014.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
|
18
|
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 2014; 286:393-403. [PMID: 25514048 DOI: 10.1016/j.neuroscience.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
Abstract
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD.
Collapse
|
19
|
Cho JA, Zhang X, Miller GM, Lencer WI, Nery FC. 4-Phenylbutyrate attenuates the ER stress response and cyclic AMP accumulation in DYT1 dystonia cell models. PLoS One 2014; 9:e110086. [PMID: 25379658 PMCID: PMC4224384 DOI: 10.1371/journal.pone.0110086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/13/2014] [Indexed: 01/01/2023] Open
Abstract
Dystonia is a neurological disorder in which sustained muscle contractions induce twisting and repetitive movements or abnormal posturing. DYT1 early-onset primary dystonia is the most common form of hereditary dystonia and is caused by deletion of a glutamic acid residue (302/303) near the carboxyl-terminus of encoded torsinA. TorsinA is localized primarily within the contiguous lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), and is hypothesized to function as a molecular chaperone and an important regulator of the ER stress-signaling pathway, but how the mutation in torsinA causes disease remains unclear. Multiple lines of evidence suggest that the clinical symptoms of dystonia result from abnormalities in dopamine (DA) signaling, and possibly involving its down-stream effector adenylate cyclase that produces the second messenger cyclic adenosine-3', 5'-monophosphate (cAMP). Here we find that mutation in torsinA induces ER stress, and inhibits the cyclic adenosine-3', 5'-monophosphate (cAMP) response to the adenylate cyclase agonist forskolin. Both defective mechanins are corrected by the small molecule 4-phenylbutyrate (4-PBA) that alleviates ER stress. Our results link torsinA, the ER-stress-response, and cAMP-dependent signaling, and suggest 4-PBA could also be used in dystonia treatment. Other pharmacological agents known to modulate the cAMP cascade, and ER stress may also be therapeutic in dystonia patients and can be tested in the models described here, thus supplementing current efforts centered on the dopamine pathway.
Collapse
Affiliation(s)
- Jin A. Cho
- Division of Gastroenterology/Cell Biology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Xuan Zhang
- Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, United States of America
| | - Gregory M. Miller
- Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA, United States of America
| | - Wayne I. Lencer
- Division of Gastroenterology/Cell Biology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
- Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA, United States of America
| | - Flavia C. Nery
- Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
20
|
Kleppe R, Rosati S, Jorge-Finnigan A, Alvira S, Ghorbani S, Haavik J, Valpuesta JM, Heck AJR, Martinez A. Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3γ. Mol Cell Proteomics 2014; 13:2017-30. [PMID: 24947669 PMCID: PMC4125734 DOI: 10.1074/mcp.m113.035709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylated tyrosine hydroxylase (TH) can form complexes with 14-3-3 proteins, resulting in enzyme activation and stabilization. Although TH was among the first binding partners identified for these ubiquitous regulatory proteins, the binding stoichiometry and the activation mechanism remain unknown. To address this, we performed native mass spectrometry analyses of human TH (nonphosphorylated or phosphorylated on Ser19 (TH-pS19), Ser40 (TH-pS40), or Ser19 and Ser40 (TH-pS19pS40)) alone and together with 14-3-3γ. Tetrameric TH-pS19 (224 kDa) bound 14-3-3γ (58.3 kDa) with high affinity (Kd = 3.2 nM), generating complexes containing either one (282.4 kDa) or two (340.8 kDa) dimers of 14-3-3. Electron microscopy also revealed one major population of an asymmetric complex, consistent with one TH tetramer and one 14-3-3 dimer, and a minor population of a symmetric complex of one TH tetramer with two 14-3-3 dimers. Lower phosphorylation stoichiometries (0.15–0.54 phosphate/monomer) produced moderate changes in binding kinetics, but native MS detected much less of the symmetric TH:14-3-3γ complex. Interestingly, dephosphorylation of [32P]-TH-pS19 was mono-exponential for low phosphorylation stoichiometries (0.18–0.52), and addition of phosphatase accelerated the dissociation of the TH-pS19:14-3-3γ complex 3- to 4-fold. All together this is consistent with a model in which the pS19 residues in the TH tetramer contribute differently in the association to 14-3-3γ. Complex formation between TH-pS40 and 14-3-3γ was not detected via native MS, and surface plasmon resonance showed that the interaction was very weak. Furthermore, TH-pS19pS40 behaved similarly to TH-pS19 in terms of binding stoichiometry and affinity (Kd = 2.1 nM). However, we found that 14-3-3γ inhibited the phosphorylation rate of TH-pS19 by PKA (3.5-fold) on Ser40. We therefore conclude that Ser40 does not significantly contribute to the binding of 14-3-3γ, and rather has reduced accessibility in the TH:14-3-3γ complex. This adds to our understanding of the fine-tuned physiological regulation of TH, including hierarchical phosphorylation at multiple sites.
Collapse
Affiliation(s)
- Rune Kleppe
- From the ‡Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; §K. G. Jebsen Centre for Research on Neuropsychiatric disorders, Jonas Lies vei 91, 5009 Bergen, Norway; ¶Division for Psychiatry, Haukeland University Hospital, Sandviksleitet 1, 5036 Bergen, Norway
| | - Sara Rosati
- **Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ‡‡Netherland Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ana Jorge-Finnigan
- From the ‡Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Sara Alvira
- §§Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Sadaf Ghorbani
- From the ‡Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jan Haavik
- From the ‡Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; §K. G. Jebsen Centre for Research on Neuropsychiatric disorders, Jonas Lies vei 91, 5009 Bergen, Norway; ¶Division for Psychiatry, Haukeland University Hospital, Sandviksleitet 1, 5036 Bergen, Norway
| | | | - Albert J R Heck
- **Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ‡‡Netherland Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Aurora Martinez
- From the ‡Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; §K. G. Jebsen Centre for Research on Neuropsychiatric disorders, Jonas Lies vei 91, 5009 Bergen, Norway;
| |
Collapse
|
21
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
22
|
Das E, Bhattacharyya NP. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes. FEBS Lett 2014; 588:1706-14. [DOI: 10.1016/j.febslet.2014.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/01/2014] [Accepted: 03/09/2014] [Indexed: 12/13/2022]
|
23
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
24
|
Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton P. Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit. Br J Pharmacol 2013; 167:1467-79. [PMID: 22774922 DOI: 10.1111/j.1476-5381.2012.02100.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss; however, the noradrenergic system exhibits degeneration as well. Noradrenergic deficit in PD may be responsible for certain non-motor symptoms of the pathology, including psychiatric disorders and cognitive decline. The aim of this study was to generate a pre-motor rodent model of PD with noradrenergic denervation, and to assess whether treatment with exendin-4 (EX-4), a glucagon-like peptide 1 receptor agonist, could reverse impairment exhibited by our model. EXPERIMENTAL APPROACH We generated a model of PD utilizing N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine and 6-hydroxydopamine to create partial lesions of both the noradrenergic and dopaminergic systems respectively. We then assessed the validity of our model using an array of behavioural paradigms and biochemical techniques. Finally, we administered EX-4 over a 1 week period to determine therapeutic efficacy. KEY RESULTS Our model exhibits anhedonia and decreased object recognition as indicated by a decrease in sucrose preference, increased immobility in the forced swim test and reduced novel object exploration. Tissue and extracellular dopamine and noradrenaline were reduced in the frontal cortex and striatum. TH+ cell counts decreased in the locus coeruleus and substantia nigra. Treatment with EX-4 reversed behavioural impairment and restored extracellular/tissue levels of both dopamine and noradrenaline and TH+ cell counts. CONCLUSION AND IMPLICATIONS We conclude that early treatment with EX-4 may reverse certain neuropsychiatric dysfunction and restore dopamine and noradrenaline content.
Collapse
Affiliation(s)
- N Rampersaud
- Department of Pharmacology, Faculty of Life Sciences, The School of Pharmacy, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Cyclic AMP-dependent regulation of tyrosine hydroxylase mRNA and immunofluorescence levels in rat retinal precursor cells. Cell Tissue Res 2013; 352:207-16. [PMID: 23355011 DOI: 10.1007/s00441-013-1555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Stimulation of tyrosine hydroxylase (TH) gene transcription by cyclic AMP (cAMP) has been clearly established in adrenal medula cells and neural-crest-derived cell lines but information on this mechanism is still lacking in dopaminergic neurons. Because they are easily amenable to in vitro experiments, dopaminergic amacrine cells of the retina might constitute a valuable model system to study this mechanism. We have used real-time reverse transcription with the polymerase chain reaction to quantify TH mRNA levels in the rat retina during post-natal development and in retinal precursor cells obtained from neonatal rats and cultured for 3 days in serum-free medium. Whereas the TH mRNA concentration remains consistantly low in control cultures, treatment with cAMP-increasing agents (forskolin, membrane depolarization, phosphodiesterase inhibitors) is sufficient to raise it to the level observed in adult retina (15-fold increase). Treatment of the cultured cells can be delayed by up to 2 days with identical results at the TH mRNA level, thus ruling out a survival-promoting effect of cAMP. TH immunofluorescence has confirmed cAMP-dependent regulation of TH expression at the protein level and indicates that the frequency of TH-positive cells in the cultures is similar to that observed in the adult retina. Selective phosphodiesterase inhibitors suggest that PDE4 is the major subtype involved in the dopaminergic amacrine cell response. Our data clearly establish the cAMP-dependent regulation of TH mRNA and immunofluorescence levels in retinal precursor cells. The possible role of this regulation mechanism in the developmental activation of TH gene expression is discussed.
Collapse
|
26
|
Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton PS. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions. Neuropeptides 2012; 46:183-93. [PMID: 22921965 DOI: 10.1016/j.npep.2012.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022]
Abstract
Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD.
Collapse
Affiliation(s)
- N Rampersaud
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
28
|
Kalinina TS, Shishkina GT, Dygalo NN. Induction of Tyrosine Hydroxylase Gene Expression by Glucocorticoids in the Perinatal Rat Brain is Age-Dependent. Neurochem Res 2012; 37:811-8. [DOI: 10.1007/s11064-011-0676-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
|
29
|
Perez-Costas E, Melendez-Ferro M, Rice MW, Conley RR, Roberts RC. Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psychiatry 2012; 3:31. [PMID: 22509170 PMCID: PMC3321522 DOI: 10.3389/fpsyt.2012.00031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/22/2012] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Despite the importance of dopamine neurotransmission in schizophrenia, very few studies have addressed anomalies in the mesencephalic dopaminergic neurons of the substantia nigra/ventral tegmental area (SN/VTA). Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the production of dopamine, and a possible contributor to the anomalies in the dopaminergic neurotransmission observed in schizophrenia. OBJECTIVES In this study, we had three objectives: (1) Compare TH expression (mRNA and protein) in the SN/VTA of schizophrenia and control postmortem samples. (2) Assess the effect of antipsychotic medications on the expression of TH in the SN/VTA. (3) Examine possible regional differences in TH expression anomalies within the SN/VTA. METHODS To achieve these objectives three independent studies were conducted: (1) A pilot study to compare TH mRNA and TH protein levels in the SN/VTA of postmortem samples from schizophrenia and controls. (2) A chronic treatment study was performed in rodents to assess the effect of antipsychotic medications in TH protein levels in the SN/VTA. (3) A second postmortem study was performed to assess TH and phosphorylated TH protein levels in two types of samples: schizophrenia and control samples containing the entire rostro-caudal extent of the SN/VTA, and schizophrenia and control samples containing only mid-caudal regions of the SN/VTA. RESULTS AND CONCLUSION Our studies showed impairment in the dopaminergic system in schizophrenia that could be mainly (or exclusively) located in the rostral region of the SN/VTA. Our studies also showed that TH protein levels were significantly abnormal in schizophrenia, while mRNA expression levels were not affected, indicating that TH pathology in this region may occur posttranscriptionally. Lastly, our antipsychotic animal treatment study showed that TH protein levels were not significantly affected by antipsychotic treatment, indicating that these anomalies are an intrinsic pathology rather than a treatment effect.
Collapse
Affiliation(s)
- Emma Perez-Costas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
30
|
Lenartowski R, Goc A. Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 2011; 29:873-83. [PMID: 21803145 DOI: 10.1016/j.ijdevneu.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
Abstract
The activity of tyrosine hydroxylase (TH, EC 1.14.16.2) gene and protein determines the catecholamine level, which, in turn, is crucial for the organism homeostasis. The TH gene expression is regulated by near all possible regulatory mechanisms on epigenetic, transcriptional and posttranscriptional levels. Ongoing molecular characteristic of the TH gene reveals some of the cis and trans elements necessary for its proper expression but most of them especially these responsible for tissue specific expression remain still obscure. This review will focus on some aspects of TH regulation including spatial chromatin organization of the TH locus and TH gene, regulatory elements mediating basal, induced and cell-specific activity, transcriptional elongation, alternative TH RNA processing, and the regulation of TH RNA stability in the cell.
Collapse
Affiliation(s)
- Robert Lenartowski
- Nicolaus Copernicus University, Institute of General and Molecular Biology, Department of Genetics, Gagarina 9, 87-100 Toruń, Poland
| | | |
Collapse
|
31
|
Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol 2010; 30:5406-20. [PMID: 20837708 DOI: 10.1128/mcb.00217-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a molecular hub that regulates protein synthesis in response to a number of extracellular stimuli. Cyclic AMP (cAMP) is considered to be an important second messenger that controls mTOR; however, the signaling components of this pathway have not yet been elucidated. Here, we identify cAMP phosphodiesterase 4D (PDE4D) as a binding partner of Rheb that acts as a cAMP-specific negative regulator of mTORC1. Under basal conditions, PDE4D binds Rheb in a noncatalytic manner that does not require its cAMP-hydrolyzing activity and thereby inhibits the ability of Rheb to activate mTORC1. However, elevated cAMP levels disrupt the interaction of PDE4D with Rheb and increase the interaction between Rheb and mTOR. This enhanced Rheb-mTOR interaction induces the activation of mTORC1 and cap-dependent translation, a cellular function of mTORC1. Taken together, our results suggest a novel regulatory mechanism for mTORC1 in which the cAMP-determined dynamic interaction between Rheb and PDE4D provides a key, unique regulatory event. We also propose a new role for PDE4 as a molecular transducer for cAMP signaling.
Collapse
|
32
|
Xu L, Sterling CR, Tank AW. cAMP-mediated stimulation of tyrosine hydroxylase mRNA translation is mediated by polypyrimidine-rich sequences within its 3'-untranslated region and poly(C)-binding protein 2. Mol Pharmacol 2009; 76:872-83. [PMID: 19620256 DOI: 10.1124/mol.109.057596] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tyrosine hydroxylase (TH) plays a critical role in maintaining the appropriate concentrations of catecholamine neurotransmitters in brain and periphery, particularly during long-term stress, long-term drug treatment, or neurodegenerative diseases. Its expression is controlled by both transcriptional and post-transcriptional mechanisms. In a previous report, we showed that treatment of rat midbrain slice explant cultures or mouse MN9D cells with cAMP analog or forskolin leads to induction of TH protein without concomitant induction of TH mRNA. We further showed that cAMP activates mechanisms that regulate TH mRNA translation via cis-acting sequences within its 3'-untranslated region (UTR). In the present report, we extend these studies to show that MN9D cytoplasmic proteins bind to the same TH mRNA 3'-UTR domain that is required for the cAMP response. RNase T1 mapping demonstrates binding of proteins to a 27-nucleotide polypyrimidine-rich sequence within this domain. A specific mutation within the polypyrimidine-rich sequence inhibits protein binding and cAMP-mediated translational activation. UV-cross-linking studies identify a approximately 44-kDa protein as a major TH mRNA 3'-UTR binding factor, and cAMP induces the 40- to 42-kDa poly(C)-binding protein-2 (PCBP2) in MN9D cells. We show that PCBP2 binds to the TH mRNA 3'-UTR domain that participates in the cAMP response. Overexpression of PCBP2 induces TH protein without concomitant induction of TH mRNA. These results support a model in which cAMP induces PCBP2, leading to increased interaction with its cognate polypyrimidine binding site in the TH mRNA 3'-UTR. This increased interaction presumably plays a role in the activation of TH mRNA translation by cAMP in dopaminergic neurons.
Collapse
Affiliation(s)
- Lu Xu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
33
|
Radcliffe PM, Sterling CR, Tank AW. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone. J Neurochem 2009; 109:1272-84. [PMID: 19476543 DOI: 10.1111/j.1471-4159.2009.06056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 h, but less than 3 h, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene.
Collapse
Affiliation(s)
- Pheona M Radcliffe
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|