1
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
2
|
Ho TNT, Abraham N, Lewis RJ. Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Front Pharmacol 2021; 12:803397. [PMID: 34955864 PMCID: PMC8692984 DOI: 10.3389/fphar.2021.803397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
OmIA, isolated from Conus omaria venom, is a potent antagonist at α7 nAChRs. We determined the co-crystal structure of OmIA with Lymnae stagnalis acetylcholine binding protein (Ls-AChBP) that identified His5, Val10 and Asn11 as key determinants for the high potency of OmIA at α7 nAChRs. Remarkably, despite a competitive binding mode observed in the co-crystal structure, OmIA and analogues displayed functional insurmountable antagonism at α7 and α3β4 nAChRs, except OmIA analogues having long side chain at position 10 ([V10Q]OmIA and [V10L]OmIA), which were partial insurmountable antagonist at α7 nAChRs in the presence of type II positive allosteric modulators (PAMs). A “two-state, two-step” model was used to explain these observations, with [V10Q]OmIA and [V10L]OmIA co-existing in a fast reversible/surmountable as well as a tight binding/insurmountable state. OmIA and analogues also showed biphasic-inhibition at α7 nAChRs in the presence of PNU120596, with a preference for the high-affinity binding site following prolonged exposure. The molecular basis of binding and complex pharmacological profile of OmIA at α7 nAChRs presented in here expands on the potential of α-conotoxins to probe the pharmacological properties of nAChRs and may help guide the development novel α7 modulators.
Collapse
Affiliation(s)
- Thao N T Ho
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nikita Abraham
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
3
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
4
|
Suresh A, Hung A. Structural effects of divalent calcium cations on the α7 nicotinic acetylcholine receptor: A molecular dynamics simulation study. Proteins 2019; 87:992-1005. [PMID: 31228282 DOI: 10.1002/prot.25761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/27/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
The α7 subtype of neuronal nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein that is vital to various neurological functions, including modulation of neurotransmitter release. A relatively high concentration of extracellular Ca2+ in the neuronal environment is likely to exert substantial structural and functional influence on nAChRs, which may affect their interactions with agonists and antagonists. In this work, we employed atomistic molecular dynamics (MD) simulations to examine the effects of elevated Ca2+ on the structure and dynamics of α7 nAChR embedded in a model phospholipid bilayer. Our results suggest that the presence of Ca2+ in the α7 nAChR environment results in closure of loop C-in the extracellular ligand-binding domain, a motion normally associated with agonist binding and receptor activation. Elevated Ca2+ also alters the conformation of key regions of the receptor, including the inter-helical loops, pore-lining helices and the "gate" residues, and causes partial channel opening in the absence of an agonist, leading to an attendant reduction in the free energy of Ca2+ permeation through the pore as elucidated by umbrella sampling simulations. Overall, the structural and permeability changes in α7 nAChR suggest that elevated Ca2+ induces a partially activated receptor state that is distinct from both the resting and the agonist-activated states. These results are consistent with the notion that divalent ions can serve as a potentiator of nAChRs, resulting in a higher rate of receptor activation (and subsequent desensitization) in the presence of agonists, with possible implications for diseases involving calcium dysregulation.
Collapse
Affiliation(s)
- Abishek Suresh
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T. Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicol Lett 2017; 293:149-156. [PMID: 29248576 DOI: 10.1016/j.toxlet.2017.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/30/2023]
Abstract
Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to "resensitize" i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by dose-response profiles of agonists, carbamoylcholine and epibatidine in the absence and presence of PNU-120596. Although less pronounced than PNU-120596 and the lead structure MB327, bispyridinium compounds, particularly those substituted at position 3 and 4, resensitized the nicotine desensitized hα7-nAChRs in a concentration-dependent manner and prolonged the mean channel open time. In summary, identification of more potent compounds able to restore nAChR function in OP intoxication is needed for development of a putative efficient antidote.
Collapse
Affiliation(s)
- Corinna Scheffel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Germany.
| | - Karin V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Klaus T Wanner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
6
|
Newcombe J, Chatzidaki A, Sheppard TD, Topf M, Millar NS. Diversity of Nicotinic Acetylcholine Receptor Positive Allosteric Modulators Revealed by Mutagenesis and a Revised Structural Model. Mol Pharmacol 2017; 93:128-140. [PMID: 29196491 PMCID: PMC5767682 DOI: 10.1124/mol.117.110551] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023] Open
Abstract
By combining electrophysiological and computational approaches we have examined a series of positive allosteric modulators (PAMs) acting on the human α7 nicotinic acetylcholine receptor (nAChR). Electrophysiological studies have focused on three α7-selective PAMs (A-867744, TBS-516, and TQS) that display similar effects on wild-type α7 nAChRs. In addition to potentiating agonist-evoked responses, all three compounds reduce receptor desensitization and, consequently, are classed as type II PAMs. Despite having similar effects on wild-type receptors, A-867744 was found to have profoundly differing effects on mutated receptors compared with TBS-516 and TQS, a finding that is consistent with previous studies indicating that A-867744 may have a different mechanism of action compare with other α7-selective type II PAMs. Due to evidence that these PAMs bind within the α7 nAChR transmembrane region, we generated and validated new structural models of α7. Importantly, we have corrected a previously identified error in the transmembrane region of the original cryo–electron microscopy Torpedo model; the only pentameric ligand-gated ion channel imaged in a native lipid membrane. Real-space refinement was used to generate closed and open conformations on which the α7 models were based. Consensus docking with an extended series of PAMs with chemical similarity to A-867744, TBS-516, and TQS suggests that all bind to a broadly similar intersubunit transmembrane site. However, differences in the predicted binding of A-867744, compared with TBS-516 and TQS, may help to explain the distinct functional effects of A-867744. Thus, our revised structural models may provide a useful tool for interpreting functional effects of PAMs.
Collapse
Affiliation(s)
- Joseph Newcombe
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Anna Chatzidaki
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Tom D Sheppard
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Maya Topf
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| | - Neil S Millar
- Departments of Chemistry (J.N., T.D.S.) and Neuroscience, Physiology and Pharmacology (A.C., N.S.M.), University College London, London, United Kingdom; and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom (J.N., M.T.)
| |
Collapse
|
7
|
Shelukhina I, Spirova E, Kudryavtsev D, Ojomoko L, Werner M, Methfessel C, Hollmann M, Tsetlin V. Calcium imaging with genetically encoded sensor Case12: Facile analysis of α7/α9 nAChR mutants. PLoS One 2017; 12:e0181936. [PMID: 28797116 PMCID: PMC5552293 DOI: 10.1371/journal.pone.0181936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs) may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method. The method is based on transient co-expression of α7/α9 nAChR mutants in neuroblastoma cells together with Ric-3 or NACHO chaperones and Case12 fluorescent calcium ion sensor followed by analysis of their pharmacology using a fluorescence microscope or a fluorometric imaging plate reader (FLIPR) with a GFP filter set. The results obtained were confirmed by electrophysiology and by calcium imaging with the conventional calcium indicator Fluo-4. The affinities for acetylcholine and epibatidine were determined for human and rat α7 nAChRs, and for their mutants with homologous residues of α9 nAChR incorporated at positions 117-119, 184, 185, 187, and 189, which are anticipated to be involved in ligand binding. The strongest decrease in the affinity was observed for mutations at positions 187 and 119. The L119D mutation of α7 nAChR, showing a larger effect for epibatidine than for acetylcholine, may implicate this position in pharmacological differences between α7 and α9 nAChRs.
Collapse
Affiliation(s)
- Irina Shelukhina
- Department of Molecular Basis of Neurosignalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Spirova
- Department of Molecular Basis of Neurosignalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Basis of Neurosignalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Lucy Ojomoko
- Department of Molecular Basis of Neurosignalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Markus Werner
- Department of Biochemistry I, Ruhr University Bochum, Bochum, Germany
| | | | - Michael Hollmann
- Department of Biochemistry I, Ruhr University Bochum, Bochum, Germany
| | - Victor Tsetlin
- Department of Molecular Basis of Neurosignalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Windley MJ, Vetter I, Lewis RJ, Nicholson GM. Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology 2017; 127:224-242. [PMID: 28396143 DOI: 10.1016/j.neuropharm.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023]
Abstract
κ-Hexatoxins (κ-HXTXs) are a family of excitotoxic insect-selective neurotoxins from Australian funnel-web spiders that are lethal to a wide range of insects, but display no toxicity towards vertebrates. The prototypic κ-HXTX-Hv1c selectively blocks native and expressed cockroach large-conductance calcium-activated potassium (BKCa or KCa1.1) channels, but not their mammalian orthologs. Despite this potent and selective action on insect KCa1.1 channels, we found that the classical KCa1.1 blockers paxilline, charybdotoxin and iberiotoxin, which all block insect KCa1.1 channels, are not lethal in crickets. We therefore used whole-cell patch-clamp analysis of cockroach dorsal unpaired median (DUM) neurons to study the effects of κ-HXTX-Hv1c on sodium-activated (KNa), delayed-rectifier (KDR) and 'A-type' transient (KA) K+ channels. 1 μM κ-HXTX-Hv1c failed to significantly inhibit cockroach KNa and KDR channels, but did cause a 30 ± 7% saturating inhibition of KA channel currents, possibly via a Kv4 (Shal-like) action. However, this modest action at such a high concentration of κ-HXTX-Hv1c would indicate a different lethal target. Accordingly, we assessed the actions of κ-HXTX-Hv1c on neurotransmitter-gated ion channels in cockroach DUM neurons. We found that κ-HXTX-Hv1c failed to produce any major effects on GABAA or glutamate-Cl receptors but dramatically slowed nicotine-evoked ACh receptor (nAChR) current decay and reversed nAChR desensitization. These actions occurred without any alterations to nAChR current amplitude or the nicotine concentration-response curve, and are consistent with a positive allosteric modulation of nAChRs. κ-HXTX-Hv1c therefore represents the first venom peptide that selectively modulates insect nAChRs with a mode of action similar to the excitotoxic insecticide spinosyn A. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Monique J Windley
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, Brisbane St. Lucia, QLD 4072, Australia; School of Pharmacy, University of Queensland, Brisbane St. Lucia, QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, University of Queensland, Brisbane St. Lucia, QLD 4072, Australia
| | - Graham M Nicholson
- School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
9
|
Curtice KJ, Leavitt LS, Chase K, Raghuraman S, Horvath MP, Olivera BM, Teichert RW. Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 2015; 115:1031-42. [PMID: 26581874 DOI: 10.1152/jn.00894.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022] Open
Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Collapse
Affiliation(s)
- Kigen J Curtice
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Lee S Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
10
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Marotta CB, Lester HA, Dougherty DA. An Unaltered Orthosteric Site and a Network of Long-Range Allosteric Interactions for PNU-120596 in α7 Nicotinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2015. [PMID: 26211363 DOI: 10.1016/j.chembiol.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are vital to neuronal signaling, are implicated in important processes such as learning and memory, and are therapeutic targets for neural diseases. The α7 nAChR has been implicated in Alzheimer's disease and schizophrenia, and allosteric modulators have become one focus of drug development efforts. We investigate the mode of action of the α7-selective positive allosteric modulator, PNU-120596, and show that the higher potency of acetylcholine in the presence of PNU-120596 is not due to an altered agonist binding site. In addition, we propose several residues in the gating interface and transmembrane region that are functionally important to transduction of allosteric properties, and link PNU-120596, the acetylcholine binding region, and the receptor gate. These results suggest global protein stabilization from a communication network through several key residues that alter the gating equilibrium of the receptor while leaving the agonist binding properties unperturbed.
Collapse
Affiliation(s)
- Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Kasheverov IE, Shelukhina IV, Kudryavtsev DS, Makarieva TN, Spirova EN, Guzii AG, Stonik VA, Tsetlin VI. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar Drugs 2015; 13:1255-66. [PMID: 25775422 PMCID: PMC4377982 DOI: 10.3390/md13031255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Tatyana N Makarieva
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| | - Alla G Guzii
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia.
| |
Collapse
|
13
|
Mueller A, Starobova H, Inserra MC, Jin AH, Deuis JR, Dutertre S, Lewis RJ, Alewood PF, Daly NL, Vetter I. α-Conotoxin MrIC is a biased agonist at α7 nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 94:155-63. [PMID: 25646788 DOI: 10.1016/j.bcp.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/23/2022]
Abstract
MrIC is a recently described selective agonist of endogenously expressed α7 nAChR. In this study, we further characterize the pharmacological activity of MrIC using Ca(2+) imaging approaches in SH-SY5Y cells endogenously expressing α7 nAChR and demonstrate that MrIC exclusively activates α7 nAChR modulated by type II positive allosteric modulators, including PNU120596. MrIC was a full agonist at PNU120596-modulated α7 nAChR compared with choline, albeit with slower kinetics, but failed to elicit a Ca(2+) response in the absence of PNU120596. Interestingly, the NMR structure of MrIC showed a typical 4/7 α-conotoxin fold, indicating that its unusual pharmacological activity is likely sequence-dependent. Overall, our results suggest that MrIC acts as a biased agonist that can only activate α7 nAChR modified by type II positive allosteric modulators, and thus represents a valuable tool to probe the pharmacological properties of this important ion channel.
Collapse
Affiliation(s)
- Alexander Mueller
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hana Starobova
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Marco C Inserra
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ai-Hua Jin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer R Deuis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2-CNRS, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul F Alewood
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Queensland 4878, Australia
| | - Irina Vetter
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
14
|
Hashimoto K. Targeting of α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker. Curr Pharm Des 2015; 21:3797-806. [PMID: 26044974 PMCID: PMC5024727 DOI: 10.2174/1381612821666150605111345] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that the α7 subtype of nicotinic acetylcholine receptors (nAChRs) plays a key role in inflammatory processes, thought to be involved in the pathophysiology of neuropsychiatric diseases, such as schizophrenia and Alzheimer's disease. Preclinical and clinical studies showed that the diminished suppression of P50 auditory evoked potentials in patients with schizophrenia may be associated with a decreased density of α7 nAChRs in the brain. This points to a role for auditory sensory gating (P50) as a translational biomarker. A number of agonists and positive allosteric modulators (PAMs) for α7 nAChR promoted beneficial effects in animal models with sensory gating and cognitive deficits. Additionally, several clinical studies showed that α7 nAChR agonists could improve suppression in auditory P50 evoked potentials, as well as cognitive deficits, and negative symptoms in patients with schizophrenia. Taken together, α7 nAChR presents as an extremely attractive therapeutic target for schizophrenia. In this article, the author discusses recent findings on α7 nAChR agonists such as DMXB-A, RG3487, TC-5619, tropisetron, EVP-6124 (encenicline), ABT-126, AQW051 and α7 nAChR PAMs such as JNJ-39393406, PNU- 120596 and AVL-3288 (also known as UCI-4083), and their potential as therapeutic drugs for neuropsychiatric diseases, such as schizophrenia.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic, Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
15
|
Tillman TS, Seyoum E, Mowrey DD, Xu Y, Tang P. ELIC-α7 Nicotinic acetylcholine receptor (α7nAChR) chimeras reveal a prominent role of the extracellular-transmembrane domain interface in allosteric modulation. J Biol Chem 2014; 289:13851-7. [PMID: 24695730 PMCID: PMC4022858 DOI: 10.1074/jbc.m113.524611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/10/2014] [Indexed: 01/08/2023] Open
Abstract
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.
Collapse
Affiliation(s)
| | | | - David D Mowrey
- From the Departments of Anesthesiology, Computational and Systems Biology, and
| | - Yan Xu
- From the Departments of Anesthesiology, Pharmacology and Chemical Biology, Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Pei Tang
- From the Departments of Anesthesiology, Computational and Systems Biology, and Pharmacology and Chemical Biology,
| |
Collapse
|
16
|
Munro G, Hansen R, Erichsen H, Timmermann D, Christensen J, Hansen H. The α7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol 2013; 167:421-35. [PMID: 22536953 DOI: 10.1111/j.1476-5381.2012.02003.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators. Increasingly, allosteric modulation of ligand-gated receptors is recognized as a potential strategy to obtain desired efficacy in the absence of the putative adverse effects associated with agonist activation. EXPERIMENTAL APPROACH We compared the anti-hyperalgesic and anti-inflammatory effects of the α7 nACh receptor agonist compound B with the positive allosteric modulator (PAM) PNU-120596 and the standard non-steroidal anti-inflammatory drug (NSAID), diclofenac, in rats with hind paw inflammation induced by either formalin, carrageenan or complete Freund's adjuvant (CFA). KEY RESULTS When administered before carrageenan, both diclofenac (30 mg·kg(-1) ) and PNU-120596 (30 mg·kg(-1) ) significantly reduced mechanical hyperalgesia and weight-bearing deficits for up to 4 h. Compound B (30 mg·kg(-1) ) also attenuated both measures of pain-like behaviour, albeit less robustly. Whereas compound B and PNU-120596 attenuated the carrageenan-induced increase in levels of TNF-α and IL-6 within the hind paw oedema, diclofenac only attenuated IL-6 levels. Established mechanical hyperalgesia induced by carrageenan or CFA was also partially reversed by compound B and PNU-120596. However, diclofenac was considerably more efficacious. Formalin-induced nocifensive behaviours were only reversed by compound B, albeit at doses which disrupted motor performance. CONCLUSIONS AND IMPLICATIONS α7 nACh receptor PAMs could prove to be useful in the treatment of inflammatory pain conditions, which respond poorly to NSAIDs or in situations where NSAIDs are contra-indicated.
Collapse
Affiliation(s)
- G Munro
- Department of Pharmacology, NeuroSearch A/S, Ballerup, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The precise role of nicotinic acetylcholine receptors (nAChRs) in central cognitive processes still remains incompletely understood almost 150 years after its initial discovery. Central nAChRs are activated by acetylcholine, which functions in the extracellular space as a nonsynaptic messenger. Recently, a novel concept in the nAChR mode of operation has been described as a fast-type nonsynaptic transmission. In this review, we attempt to summarise the experimental findings that support the role of one of the most distributed receptor subtypes, the α7 nAChRs, and particularly focus on its procognitive effects following receptor activation. The basic characteristics of α7 nAChRs are discussed, from receptor homology to cellular-level functions. Synaptic plasticity is often implicated with α7 nAChRs on the basis of several diverse studies. Here, we provide a summary of the plastic features of the α7 receptor subtype and its role in higher level cognitive function. Finally, recent clinical evidence is reviewed, which demonstrates with increasing confidence the promise α7 nAChRs as a molecular target in future pharmacotherapy to prevent cognitive decline in various types of dementia, specifically, via the development of positive allosteric modulator compounds.
Collapse
Affiliation(s)
- Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Gyömrői u, 19-21, Hungary.
| | | | | | | |
Collapse
|
18
|
Freitas K, Carroll FI, Damaj MI. The antinociceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther 2012; 344:264-75. [PMID: 23115222 DOI: 10.1124/jpet.112.197871] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) subtype is abundantly expressed in the central nervous system and in the periphery. Recent evidence suggests that α7 nAChR subtypes, which can be activated by an endogenous cholinergic tone, comprising acetylcholine and the α7 nAChR agonist choline, play an important role in subchronic pain and inflammation. This study's objective was to test whether α7 nAChR positive allosteric modulators (PAMs) produce antinociception in in vivo mouse models of acute and persistent pain. Testing type I [N-(5-chloro-2-hydroxyphenyl)-N'-[2-chloro-5-(trifluoromethyl)phenyl] (NS1738)] and type II [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl) (PNU-120596)] α7 nAChR PAMs in acute and persistent pain, we found that, although neither reduced acute thermal pain, only PNU-120596 dose-dependently attenuated paw-licking behavior in the formalin test. The long-acting effect of PNU-120596 in this test was in discordance with its pharmacokinetic profile in mice, which suggests the involvement of postreceptor signaling mechanisms. Our results with selective mitogen-activated protein kinase kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene monoethanolate (U0126) argues for an important role of extracellular signal-regulated kinase-1/2 pathways activation in PNU-120596's antinociceptive effects. The α7 antagonist MLA, administered intrathecally, reversed PNU-120596's effects, confirming PNU-120596's action, in part, through central α7 nAChRs. Importantly, tolerance to PNU-120596 was not developed after subchronic treatment of the drug. Surprisingly, PNU-120596's antinociceptive effects were blocked by NS1738. Our results indicate that type II α7 nAChR PAM PNU-120596, but not type I α7 nAChR PAM NS1738, shows significant antinociception effects in persistent pain models in mice.
Collapse
Affiliation(s)
- Kelen Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA
| | | | | |
Collapse
|
19
|
Uteshev VV. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:603-38. [PMID: 22453962 DOI: 10.1007/978-94-007-2888-2_27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|
20
|
Single-channel and structural foundations of neuronal α7 acetylcholine receptor potentiation. J Neurosci 2011; 31:13870-9. [PMID: 21957249 DOI: 10.1523/jneurosci.2652-11.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal α7 acetylcholine receptor in the presence of the α7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the submillisecond α7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multisecond-long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation.
Collapse
|
21
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
22
|
Williams DK, Stokes C, Horenstein NA, Papke RL. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 2011; 137:369-84. [PMID: 21444659 PMCID: PMC3068282 DOI: 10.1085/jgp.201010587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/17/2011] [Indexed: 11/20/2022] Open
Abstract
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.
Collapse
Affiliation(s)
- Dustin K. Williams
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Nicole A. Horenstein
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
23
|
Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596. PLoS One 2010; 5:e13964. [PMID: 21103043 PMCID: PMC2980465 DOI: 10.1371/journal.pone.0013964] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/22/2010] [Indexed: 01/18/2023] Open
Abstract
Background The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. Methodology/Principal Findings An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials. Conclusions 1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5–1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.
Collapse
|
24
|
Wang J, Horenstein NA, Stokes C, Papke RL. Tethered agonist analogs as site-specific probes for domains of the human α7 nicotinic acetylcholine receptor that differentially regulate activation and desensitization. Mol Pharmacol 2010; 78:1012-25. [PMID: 20823218 DOI: 10.1124/mol.110.066662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors represent an important and complex pharmaceutical target. They can be activated by structurally diverse agonists and are highly likely to enter and remain in desensitized states at rates determined by the structures of the agonists. To identify structural elements regulating this function, we introduced reactive cysteines into the α7 ligand-binding domain allowing us to bind sulfhydryl-reactive (SH) agonist analogs or control reagents onto specific positions in the ligand binding domain. We identified four α7 mutants (S36C, L38C, W55C, and L119C) in which the tethering of the SH reagents blocked further acetylcholine-evoked activation of the receptor. However, after selective reaction with SH agonist analogs, the type II allosteric modulator N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl-3-isoxazolyl)-urea (PNU-120596) could reactivate L119C and W55C mutants and receptors with a reduced or modified C-loop. Modified S36C and L38C mutants were insensitive to reactivation by PNU-120596, whether they were reacted with agonist analogs or alternative SH reagents. Molecular modeling showed that in the W55C and L119C mutants, the ammonium pharmacophore of the agonist analog methanethiosulfonate-ethyltrimethylammonium would be in a similar but nonidentical position underneath the C-loop. The orientation assumed by the ligand tethered to 119C was approximately 3-fold more sensitive to PNU-120596 than the alternative pose at 55C. Our results support the hypothesis that a single ligand can bind within the receptor in different ways and, depending on the specific binding pose, may variously promote activation or desensitization, or, alternatively, function as a competitive antagonist. This insight may provide a new approach for drug development.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, FL 32610-0267, USA
| | | | | | | |
Collapse
|
25
|
Mechanism of Allosteric Modulation of the Cys-loop Receptors. Pharmaceuticals (Basel) 2010; 3:2592-2609. [PMID: 27713368 PMCID: PMC4033940 DOI: 10.3390/ph3082592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/30/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022] Open
Abstract
The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric modulation by many pharmaceutical agents and endogenous modulators. By binding to a site of the receptor distinct from the neurotransmitter binding site, allosteric modulators alter the response of the receptors to their agonists. The mechanism of allosteric modulation is traditionally believed to be that allosteric modulators directly change the binding affinity of receptors for their agonists. More recent studies support the notion that these allosteric modulators are very weak agonists or antagonists by themselves. They directly alter channel gating, and thus change the distribution of the receptor across multiple different affinity states, indirectly influencing receptors’ sensitivity to agonists. There are two major locations of allosteric modulator binding sites. One is in subunit interfaces of the amino-terminal domain. The other is in the transmembrane domain close to the channel gating machinery. In this review, we also give some examples of well characterized allosteric binding pockets.
Collapse
|
26
|
Cysteine accessibility analysis of the human alpha7 nicotinic acetylcholine receptor ligand-binding domain identifies L119 as a gatekeeper. Neuropharmacology 2010; 60:159-71. [PMID: 20650284 DOI: 10.1016/j.neuropharm.2010.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 01/09/2023]
Abstract
A large number of structurally diverse ligands have been produced to selectively target α7 nicotinic acetylcholine receptors (nAChRs). We applied the method of scanning cysteine accessibility mutations (SCAM) to the ligand-binding domain of the α7 nAChR to identify subdomains of particular importance to the binding and subsequent activation by select agonists. We evaluated the activity of four structurally distinct α7 agonists on wild-type human α7 and 44 targeted mutants expressed in Xenopus oocytes. Responses were measured prior and subsequent to the application of the sulfhydryl reagent methanethiosulfonate ethylammonium (MTSEA). One mutant (C116S) served as a Cys-null control, and the additional mutants were made in the C116S background. In many cases, the insertion of free cysteines into the agonist-binding site had a negative effect on function, with 12 of 44 mutants showing no detectable responses to ACh, and with only 19 of the 44 mutants showing sufficiently large responses to permit further study. Several of the cysteine mutations, including W55C, showed selectively reduced responses to the largest agonist tested, 2-methoxy,4-hydroxy-benzylidene anabaseine. Interestingly, although homology models suggest that most of the introduced cysteine mutations should have had good solvent accessibility, application of MTSEA had no effect or produced only modest changes in the agonist response profile of most mutants. Consistent with previous studies implicating W55 to play important roles in agonist activation, MTSEA treatment further decreased the functional responses of W55C to all the test agonists. While the cysteine mutation at L119 itself had relatively little effect on receptor function, treatment of L119C receptors with MTSEA or alternative cationic sulfhydryl reagents profoundly decreased activation by all agonists tested, suggesting a general block of gating. The homologous mutation in heteromeric nAChRs produced similar results, provided that the mutation was placed in the beta subunit complementary surface of the ligand-binding domain. Structural models locate the L119 residue directly across the subunit interface from the C-loop of the primary face of the binding domain. Our data suggest that a covalent modification of L119C by MTSEA or other cationic reagents might block the binding of even small agonists such as TMA through electrostatic interactions. Reaction of L119C with small non-polar reagents increases activation by small agonists but can block the access of large ligands such as benzylidene anabaseines to the ligand-binding domain.
Collapse
|
27
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
28
|
Gusev AG, Uteshev VV. Physiological concentrations of choline activate native alpha7-containing nicotinic acetylcholine receptors in the presence of PNU-120596 [1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea]. J Pharmacol Exp Ther 2009; 332:588-98. [PMID: 19923442 DOI: 10.1124/jpet.109.162099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The use of PNU-120596 [1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea], a positive allosteric modulator of alpha7 nicotinic acetylcholine receptor (nAChR), may be beneficial for enhancing cholinergic therapies. However, the effects of PNU-120596 on activation of native alpha7-containing nAChRs by physiological concentrations of choline are not known and were investigated in this study using patch-clamp electrophysiology and histaminergic tuberomammillary neurons in hypothalamic slices. In the presence of PNU-120596, subthreshold (i.e., inactive) physiological concentrations of choline ( approximately 10 microM) elicited repetitive step-like whole-cell responses reminiscent of single ion channel openings that were reversibly blocked by 20 nM methyllycaconitine, a selective alpha7 nAChR antagonist. The effects of choline and PNU-120596 were synergistic as administration of 10 to 40 microM choline or 1 to 4 muM PNU-120596 alone did not elicit responses. In voltage clamp at -60 mV, the persistent activation of alpha7-containing nAChRs by 10 microM choline plus 1 microM PNU-120596 was estimated to produce a sustained influx of Ca(2+) ions at a rate of 8.4 pC/min ( approximately 0.14 pA). In the presence of PNU-120596 in current clamp, transient step-like depolarizations ( approximately 5 mV) enhanced neuronal excitability and triggered voltage-gated conductances; a single opening of an alpha7-containing nAChR channel appeared to transiently depolarize the entire neuron and facilitate spontaneous firing. Therefore, this study tested and confirmed the hypothesis that PNU-120596 enhances the effects of subthreshold concentrations of choline on native alpha7-containing nAChRs, allowing physiological levels of choline to activate these receptors and produce whole-cell responses in the absence of exogenous nicotinic agents. In certain neurological disorders, this activation may be therapeutically beneficial, more efficacious, and safer than treatments with nAChR agonists.
Collapse
Affiliation(s)
- Alexander G Gusev
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | |
Collapse
|
29
|
Barron SC, Temple BR, See JA, Rosenberg RL, McLaughlin JT. Homology models of the alpha7 acetylcholine receptor based upon bacterial receptors: Comparison of experimental and in silico derived data. Biochem Pharmacol 2009. [DOI: 10.1016/j.bcp.2009.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|