1
|
Ren X, Bian X, Shao H, Jia S, Yu Z, Liu P, Li J, Li J. Regulation Mechanism of Dopamine Receptor 1 in Low Temperature Response of Marsupenaeus japonicus. Int J Mol Sci 2023; 24:15278. [PMID: 37894957 PMCID: PMC10607110 DOI: 10.3390/ijms242015278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine receptors (DARs) are important transmembrane receptors responsible for receiving extracellular signals in the DAR-mediated signaling pathway, and are involved in a variety of physiological functions. Herein, the D1 DAR gene from Marsupenaeus japonicus (MjDAD1) was identified and characterized. The protein encoded by MjDAD1 has the typical structure and functional domains of the G-protein coupled receptor family. MjDAD1 expression was significantly upregulated in the gills and hepatopancreas after low temperature stress. Moreover, double-stranded RNA-mediated silencing of MjDAD1 significantly changed the levels of protein kinases (PKA and PKC), second messengers (cyclic AMP (cAMP), cyclic cGMP, calmodulin, and diacyl glycerol), and G-protein effectors (adenylate cyclase and phospholipase C). Furthermore, MjDAD1 silencing increased the apoptosis rate of gill and hepatopancreas cells. Thus, following binding to their specific receptors, G-protein effectors are activated by MjDAD1, leading to DAD1-cAMP/PKA pathway-mediated regulation of caspase-dependent mitochondrial apoptosis. We suggest that MjDAD1 is indispensable for the environmental adaptation of M. japonicus.
Collapse
Affiliation(s)
- Xianyun Ren
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xueqiong Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Huixin Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoting Jia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Zhenxing Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.R.); (X.B.); (S.J.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Moritz AE, Madaras NS, Rankin ML, Inbody LR, Sibley DR. Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D 1 Dopamine Receptor and Their Roles in Modulating β-Arrestin Binding and Activation. Int J Mol Sci 2023; 24:6599. [PMID: 37047571 PMCID: PMC10095280 DOI: 10.3390/ijms24076599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein β-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting β-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using β-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive β-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for β-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in β-arrestin binding and activation.
Collapse
Affiliation(s)
| | | | | | | | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Mansour HM, Mohamed AF, El-Khatib AS, Khattab MM. Kinases control of regulated cell death revealing druggable targets for Parkinson's disease. Ageing Res Rev 2023; 85:101841. [PMID: 36608709 DOI: 10.1016/j.arr.2022.101841] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in the world. Motor impairment seen in PD is associated with dopaminergic neurotoxicity in the striatum, and dopaminergic neuronal death in the substantia nigra pars compacta. Cell death has a significant effect on the development and progression of PD. Extensive research over the last few decades has unveiled new regulated cell death (RCD) mechanisms that are not dependent on apoptosis such as necroptosis, ferroptosis, and others. In this review, we will overview the mechanistic pathways of different types of RCD. Unlike accidental cell death, RCD subroutines can be regulated and the RCD-associated kinases are potential druggable targets. Hence, we will address an overview and analysis of different kinases regulating apoptosis such as receptor-interacting protein kinase 1 (RIPK-1), RIPK3, mixed lineage kinase (MLK), Ataxia telangiectasia muted (ATM), cyclin-dependent kinase (CDK), death-associated protein kinase 1 (DAPK1), Apoptosis-signaling kinase-1 (ASK-1), and Leucine-rich repeat kinase-2 (LRRK2). In addition to the role of RIPK1, RIPK3, and Mixed Lineage Kinase Domain like Pseudokinase (MLKL) in necroptosis. We also overview functions of AMP-kinase (AMPK), protein kinase C (PKC), RIPK3, and ATM in ferroptosis. We will recap the anti-apoptotic, anti-necroptotic, and anti-ferroptotic effects of different kinase inhibitors in different models of PD. Finally, we will discuss future challenges in the repositioning of kinase inhibitors in PD. In conclusion, this review kicks-start targeting RCD from a kinases perspective, opening novel therapeutic disease-modifying therapeutic avenues for PD.
Collapse
Affiliation(s)
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Egyptian Drug Authority, EDA, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Hou J, Liu Y, Huang P, Wang Y, Pei D, Tan R, Zhang Y, Cui H. RANBP10 promotes glioblastoma progression by regulating the FBXW7/c-Myc pathway. Cell Death Dis 2021; 12:967. [PMID: 34671019 PMCID: PMC8528885 DOI: 10.1038/s41419-021-04207-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
RAN binding protein 10 (RANBP10), a ubiquitously expressed and evolutionarily conserved protein, as a RAN-GTP exchange factor (GEF) to regulate several factors involved in cellular progression. Previous studies showed that RANBP10 was overexpressed in prostate cancer cells and was responsible for androgen receptor (AR) activation. However, the biological function of RANBP10 in glioblastoma (GBM) has not been studied. Here, we found that RANBP10 was overexpressed in GBM, and high RANBP10 expression was closely linked to poor survival of patients with GBM. Downregulation of RANBP10 significantly inhibited cell proliferation, migration, invasion, and tumor growth of GBM cells. In addition, we revealed that RANBP10 could suppress the promoter activity of FBXW7, and thereby increase the protein stability of c-Myc in GBM cells. Silencing of FBXW7 in RANBP10-knockdown GBM cells could partly negate the effects induced by RANBP10 downregulation. Taken together, our findings established that RANBP10 significantly promoted GBM progression by control of the FBXW7-c-Myc axis, and suggest that RANBP10 may be a potential target in GBM.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yutao Wang
- Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dakun Pei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Ruoyue Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Yundong Zhang
- Department of Neurology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
5
|
Fu T, Park GC, Han JH, Shin JH, Park HH, Kim KS. MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2019; 35:564-574. [PMID: 31832037 PMCID: PMC6901248 DOI: 10.5423/ppj.oa.07.2019.0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyoung Su Kim
- Corresponding author.: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
6
|
Qin C, Zhang Q, Wu G. RANBP9 suppresses tumor proliferation in colorectal cancer. Oncol Lett 2019; 17:4409-4416. [PMID: 30988811 PMCID: PMC6447939 DOI: 10.3892/ol.2019.10134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
RAN binding protein 9 (RANBP9) is widely expressed in mammalian tissues, including osteosarcoma, lung, gastric and breast cancer tissues. However, currently, not much is known about the role of RANBP9 in colorectal cancer (CRC). In the present study, RANBP9 expression in CRC tissues and cell lines was measured by immunohistochemistry and western blotting, respectively. Subsequently, RANBP9-short hairpin RNA (shRNA) and RANBP9 plasmids were constructed and transfected into HCT116 and HT29 cells. The effects of RANBP9 knockdown were assessed by Cell Counting kit-8 and colony formation assays, and its effects on tumorigenicity in a nude mouse animal model were investigated. The effect of RANBP9-shRNA on cell cycle progression was analyzed by flow cytometry, while cell cycle-associated protein expression levels were examined by western blotting. Compared with in paired normal mucosa, RANBP9 was overexpressed in CRC tissues. Inhibition of RANBP9 in HCT116 and HT29 cells significantly promoted cell growth, colony formation and S phase transition, and increased tumorigenesis in vivo. Accordingly, RANBP9 overexpression inhibited cell growth and colony formation. Knockdown of RANBP9 was associated with upregulated cyclin A2 in the two cell lines. In conclusion, RANBP9 served an inhibitory role in CRC in vitro and in vivo. Therefore, RANBP9 may be considered a potential target for treatment of CRC.
Collapse
Affiliation(s)
- Chunzhi Qin
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qin Zhang
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guangbin Wu
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
7
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
8
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Rex EB, Shukla N, Gu S, Bredt D, DiSepio D. A Genome-Wide Arrayed cDNA Screen to Identify Functional Modulators of α7 Nicotinic Acetylcholine Receptors. SLAS DISCOVERY 2016; 22:155-165. [PMID: 27789755 DOI: 10.1177/1087057116676086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular signaling is in part regulated by the composition and subcellular localization of a series of protein interactions that collectively form a signaling complex. Using the α7 nicotinic acetylcholine receptor (α7nAChR) as a proof-of-concept target, we developed a platform to identify functional modulators (or auxiliary proteins) of α7nAChR signaling. The Broad cDNA library was transiently cotransfected with α7nAChR cDNA in HEK293T cells in a high-throughput fashion. Using this approach in combination with a functional assay, we identified positive modulators of α7nAChR activity. We identified known positive modulators/auxiliary proteins present in the cDNA library that regulate α7nAChR signaling, in addition to identifying novel modulators of α7nAChR signaling. These included NACHO, SPDYE11, TCF4, and ZC3H12A, all of which increased PNU-120596-mediated nicotine-dependent calcium flux. Importantly, these auxiliary proteins did not modulate GluR1(o)-mediated Ca flux. To elucidate a possible mechanism of action, we employed an α7nAChR-HA surface staining assay. NACHO enhanced α7nAChR surface expression; however, the mechanism responsible for the SPDYE11-, TCF4-, and ZC3H12A-dependent modulation of α7nAChR has yet to be defined. This report describes the development and validation of a high-throughput, genome-wide cDNA screening platform coupled to FLIPR functional assays in order to identify functional modulators of α7nAChR signaling.
Collapse
Affiliation(s)
- Elizabeth B Rex
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Nikhil Shukla
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Shenyan Gu
- 2 Neuroscience, Janssen Research and Development LLC, La Jolla, CA, USA
| | - David Bredt
- 2 Neuroscience, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Daniel DiSepio
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| |
Collapse
|
10
|
Hong SK, Kim KH, Song EJ, Kim EE. Structural Basis for the Interaction between the IUS-SPRY Domain of RanBPM and DDX-4 in Germ Cell Development. J Mol Biol 2016; 428:4330-4344. [PMID: 27622290 DOI: 10.1016/j.jmb.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023]
Abstract
RanBPM and RanBP10 are non-canonical members of the Ran binding protein family that lack the Ran binding domain and do not associate with Ran GTPase in vivo. Rather, they have been shown to be scaffolding proteins that are important for a variety of cellular processes, and both of these proteins contain a SPRY domain, which has been implicated in mediating protein-protein interactions with a variety of targets including the DEAD-box containing ATP-dependent RNA helicase (DDX-4). In this study, we have determined the crystal structures of the SPIa and the ryanodine receptor domain and of approximately 70 upstream residues (immediate upstream to SPRY motif) of both RanBPM and RanBP10. They are almost identical, composed of a β-sandwich fold with a set of two helices on each side located at the edge of the sheets. A unique shallow binding surface is formed by highly conserved loops on the surface of the β-sheet with two aspartates on one end, a positive patch on the opposite end, and a tryptophan lining at the bottom of the surface. The 20-mer peptide (residues 228-247) of human DDX-4, an ATP-dependent RNA helicase known to regulate germ cell development, binds to this surface with a KD of ~13μM. The crystal structure of the peptide complex and the mutagenesis studies elucidate how RanBPM can recognize its interaction partners to function in gametogenesis.
Collapse
Affiliation(s)
- Seung Kon Hong
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Kook-Han Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seongbuk-gu Hwarang-ro 14-gil 5, Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Kelher MR, McLaughlin NJD, Banerjee A, Elzi DJ, Gamboni F, Khan SY, Meng X, Mitra S, Silliman CC. LysoPCs induce Hck- and PKCδ-mediated activation of PKCγ causing p47phox phosphorylation and membrane translocation in neutrophils. J Leukoc Biol 2016; 101:261-273. [PMID: 27531930 DOI: 10.1189/jlb.3a0813-420rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholines (lysoPCs) are effective polymorphonuclear neutrophil (PMN) priming agents implicated in transfusion-related acute lung injury (TRALI). LysoPCs cause ligation of the G2A receptor, cytosolic Ca2+ flux, and activation of Hck. We hypothesize that lysoPCs induce Hck-dependent activation of protein kinase C (PKC), resulting in phosphorylation and membrane translocation of 47 kDa phagocyte oxidase protein (p47phox). PMNs, human or murine, were primed with lysoPCs and were smeared onto slides and examined by digital microscopy or separated into subcellular fractions or whole-cell lysates. Proteins were immunoprecipitated or separated by polyacrylamide gel electrophoresis and immunoblotted for proteins of interest. Wild-type (WT) and PKCγ knockout (KO) mice were used in a 2-event model of TRALI. LysoPCs induced Hck coprecipitation with PKCδ and PKCγ and the PKCδ:PKCγ complex also had a fluorescence resonance energy transfer (FRET)+ interaction with lipid rafts and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 (WAVE2). PKCγ then coprecipitated with p47phox Immunoblotting, immunoprecipitation (IP), specific inhibitors, intracellular depletion of PKC isoforms, and PMNs from PKCγ KO mice demonstrated that Hck elicited activation/Tyr phosphorylation (Tyr311 and Tyr525) of PKCδ, which became Thr phosphorylated (Thr507). Activated PKCδ then caused activation of PKCγ, both by Tyr phosphorylation (Τyr514) and Ser phosphorylation, which induced phosphorylation and membrane translocation of p47phox In PKCγ KO PMNs, lysoPCs induced Hck translocation but did not evidence a FRET+ interaction between PKCδ and PKCγ nor prime PMNs. In WT mice, lysoPCs served as the second event in a 2-event in vivo model of TRALI but did not induce TRALI in PKCγ KO mice. We conclude that lysoPCs prime PMNs through Hck-dependent activation of PKCδ, which stimulates PKCγ, resulting in translocation of phosphorylated p47phox.
Collapse
Affiliation(s)
- Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA.,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Nathan J D McLaughlin
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Anirban Banerjee
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - David J Elzi
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA.,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Fabia Gamboni
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Samina Y Khan
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Xianzhong Meng
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Sanchayita Mitra
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and
| | - Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado, USA; .,Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA; and.,Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
12
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
13
|
Mukherjee A, Roy S, Saha B, Mukherjee D. Spatio-Temporal Regulation of PKC Isoforms Imparts Signaling Specificity. Front Immunol 2016; 7:45. [PMID: 26925059 PMCID: PMC4756072 DOI: 10.3389/fimmu.2016.00045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Sayoni Roy
- National Centre for Cell Science , Pune , India
| | | | | |
Collapse
|
14
|
Li Q, Wu N, Cui P, Gao F, Qian WJ, Miao Y, Sun XH, Wang Z. Suppression of outward K(+) currents by activating dopamine D1 receptors in rat retinal ganglion cells through PKA and CaMKII signaling pathways. Brain Res 2016; 1635:95-104. [PMID: 26826585 DOI: 10.1016/j.brainres.2016.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 01/11/2023]
Abstract
Dopamine plays an important role in regulating neuronal functions in the central nervous system by activating the specific G-protein coupled receptors. Both D1 and D2 dopamine receptors are extensively distributed in the retinal neurons. In the present study, we investigated the effects of D1 receptor signaling on outward K(+) currents in acutely isolated rat retinal ganglion cells (RGCs) by patch-clamp techniques. Extracellular application of SKF81297 (10 μM), a specific D1 receptor agonist, significantly and reversibly suppressed outward K(+) currents of the cells, which was reversed by SCH23390 (10 μM), a selective D1 receptor antagonist. We further showed that SKF81297 mainly suppressed the glybenclamide (Gb)- and 4-aminopyridine (4-AP)-sensitive K(+) current components, but did not show effect on the tetraethylammonium (TEA)-sensitive one. Both protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways were likely involved in the SKF81297-induced suppression of the K(+) currents since either Rp-cAMP (10 μM), a cAMP/PKA signaling inhibitor, or KN-93 (10 μM), a specific CaMKII inhibitor, eliminated the SKF81297 effect. In contrast, neither protein kinase C (PKC) nor mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway seemed likely to be involved because both the PKC inhibitor bisindolylmaleimide IV (Bis IV) (10 μM) and the MAPK/ERK1/2 inhibitor U0126 (10 μM) did not block the SKF81297-induced suppression of the K(+) currents. These results suggest that activation of D1 receptors suppresses the Gb- and 4-AP-sensitive K(+) current components in rat RGCs through the intracellular PKA and CaMKII signaling pathways, thus modulating the RGC excitability.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Na Wu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Peng Cui
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Feng Gao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, Chen YW, Tan Z, Huber JD, Rosen CL. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 2015; 43:711-24. [PMID: 25114088 PMCID: PMC4446718 DOI: 10.3233/jad-141422] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - James W. Simpkins
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daniel L. Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Kelly E. Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Correspondence to: Charles L. Rosen, MD, PhD, Department of Neurosurgery, West Virginia University School of Medicine, One Medical Center Drive, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV 26506-9183, USA. Tel.: +1 304 293 5041; Fax: +1 304 293 4819;
| |
Collapse
|
16
|
BAE JOONSEOL, KIM JASONYONGHA, PARK BYUNGLAE, CHEONG HYUNSUB, KIM JEONGHYUN, NAMGOONG SUHG, KIM JION, PARK CHULSOO, KIM BONGJO, LEE CHEOLSOON, LEE MIGYUNG, CHOI WOOHYUK, SHIN TAEMIN, HWANG JAEUK, SHIN HYOUNGDOO, WOO SUNGIL. Investigating the potential genetic association between RANBP9 polymorphisms and the risk of schizophrenia. Mol Med Rep 2014; 11:2975-80. [DOI: 10.3892/mmr.2014.3045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/05/2014] [Indexed: 11/05/2022] Open
|
17
|
Bao J, Tang C, Li J, Zhang Y, Bhetwal BP, Zheng H, Yan W. RAN-binding protein 9 is involved in alternative splicing and is critical for male germ cell development and male fertility. PLoS Genet 2014; 10:e1004825. [PMID: 25474150 PMCID: PMC4256260 DOI: 10.1371/journal.pgen.1004825] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/14/2014] [Indexed: 01/09/2023] Open
Abstract
As a member of the large Ran-binding protein family, Ran-binding protein 9 (RANBP9) has been suggested to play a critical role in diverse cellular functions in somatic cell lineages in vitro, and this is further supported by the neonatal lethality phenotype in Ranbp9 global knockout mice. However, the exact molecular actions of RANBP9 remain largely unknown. By inactivation of Ranbp9 specifically in testicular somatic and spermatogenic cells, we discovered that Ranbp9 was dispensable for Sertoli cell development and functions, but critical for male germ cell development and male fertility. RIP-Seq and proteomic analyses revealed that RANBP9 was associated with multiple key splicing factors and directly targeted >2,300 mRNAs in spermatocytes and round spermatids. Many of the RANBP9 target and non-target mRNAs either displayed aberrant splicing patterns or were dysregulated in the absence of Ranbp9. Our data uncovered a novel role of Ranbp9 in regulating alternative splicing in spermatogenic cells, which is critical for normal spermatogenesis and male fertility. Male fertility depends on successful production of functional sperm. Sperm are produced through spermatogenesis, a process of male germ cell proliferation and differentiation in the testis. Most of the genes involved in spermatogenesis are transcribed and processed into multiple isoforms, which are mainly achieved through alternative splicing. The testis-specific transcriptome, characterized by male germ cell-specific alternative splicing patterns, has been shown to be essential for successful spermatogenesis. However, how these male germ cells-specific alternative splicing events are regulated remains largely unknown. Here, we report that RANBP9 is involved in alternative splicing events that are critical for male germ cell development, and dysfunction of RANBP9 leads to disrupted spermatogenesis and compromised male fertility.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Jiachen Li
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Bhupal P. Bhetwal
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhang Y, Wang N, Su P, Lu J, Wang Y. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice. Neurosci Bull 2014; 30:1025-1035. [PMID: 25304015 DOI: 10.1007/s12264-014-1473-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/21/2014] [Indexed: 01/11/2023] Open
Abstract
Dopamine D1 receptors (D1Rs) play a key role in cocaine addiction, and multiple protein kinases such as GRKs, PKA, and PKC are involved in their phosphorylation. Recently, we reported that protein kinase D1 phosphorylates the D1R at S421 and promotes its membrane localization. Moreover, this phosphorylation of S421 is required for cocaineinduced behaviors in rats. In the present study, we generated transgenic mice over-expressing S421A-D1R in the forebrain. These transgenic mice showed reduced phospho-D1R (S421) and its membrane localization, and reduced downstream ERK1/2 activation in the striatum. Importantly, acute and chronic cocaine-induced locomotor hyperactivity and conditioned place preference were significantly attenuated in these mice. These findings provide in vivo evidence for the critical role of S421 phosphorylation of the D1R in its membrane localization and in cocaine-induced behaviors. Thus, S421 on the D1R represents a potential pharmacotherapeutic target for cocaine addiction and other drug-abuse disorders.
Collapse
Affiliation(s)
- Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Su
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, Li W, Wang Y. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 2014; 39:1290-301. [PMID: 24362306 PMCID: PMC3957125 DOI: 10.1038/npp.2013.341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.
Collapse
Affiliation(s)
- Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ping Su
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Baoming Xing
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Kai Kang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Wenqi Li
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China, Tel/Fax: +86 10 82801119, E-mail:
| |
Collapse
|
20
|
Saroja SR, Kim EJ, Shanmugasundaram B, Höger H, Lubec G. Hippocampal monoamine receptor complex levels linked to spatial memory decline in the aging C57BL/6J. Behav Brain Res 2014; 264:1-8. [PMID: 24508236 DOI: 10.1016/j.bbr.2014.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
Although a large series of reports on monoamine receptor (MAR) biochemistry and pharmacology in aging are available, work on MAR complexes rather than subunits is limited. It was the aim of the study to determine MAR complexes in hippocampi of three different age groups (3-12 and 18 months) in the mouse and to link MAR changes to spatial memory retrieval in the Morris water maze (MWM). MAR complexes were separated by blue native electrophoresis. Immunohistochemistry was performed in order to show the pattern of dopamine receptors and its colocalizations. D1R, D2R and 5-HT7R containing receptor complex levels were decreasing with age while 5-HT1AR-containing complex levels were increasing with age. D1R, 5-HT7R and 5-HT1AR were significantly correlating with the time spent in the target quadrant, representing retrieval in the MWM. D1R and D2R immunoreactivity was decreasing in an area-dependent pattern and D1R and D2R were colocalized. Individual monoamine receptors are linked to spatial memory retrieval and are modulated by age. The findings are relevant for interpretation of previous and design of future work on brain receptors, spatial memory and aging.
Collapse
Affiliation(s)
- Sivaprakasam R Saroja
- Department of Paediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Eun-Jung Kim
- Department of Paediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | | | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, A-2325 Himberg, Austria
| | - Gert Lubec
- Department of Paediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Dopaminergic tone regulates transient potassium current maximal conductance through a translational mechanism requiring D1Rs, cAMP/PKA, Erk and mTOR. BMC Neurosci 2013; 14:143. [PMID: 24225021 PMCID: PMC3840709 DOI: 10.1186/1471-2202-14-143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/07/2013] [Indexed: 01/09/2023] Open
Abstract
Background Dopamine (DA) can produce divergent effects at different time scales. DA has opposing immediate and long-term effects on the transient potassium current (IA) within neurons of the pyloric network, in the Panulirus interruptus stomatogastric ganglion. The lateral pyloric neuron (LP) expresses type 1 DA receptors (D1Rs). A 10 min application of 5-100 μM DA decreases LP IA by producing a decrease in IA maximal conductance (Gmax) and a depolarizing shift in IA voltage dependence through a cAMP-Protein kinase A (PKA) dependent mechanism. Alternatively, a 1 hr application of DA (≥5 nM) generates a persistent (measured 4 hr after DA washout) increase in IA Gmax in the same neuron, through a mechanistic target of rapamycin (mTOR) dependent translational mechanism. We examined the dose, time and protein dependencies of the persistent DA effect. Results We found that disrupting normal modulatory tone decreased LP IA. Addition of 500 pM-5 nM DA to the saline for 1 hr prevented this decrease, and in the case of a 5 nM DA application, the effect was sustained for >4 hrs after DA removal. To determine if increased cAMP mediated the persistent effect of 5nM DA, we applied the cAMP analog, 8-bromo-cAMP alone or with rapamycin for 1 hr, followed by wash and TEVC. 8-bromo-cAMP induced an increase in IA Gmax, which was blocked by rapamycin. Next we tested the roles of PKA and guanine exchange factor protein activated by cAMP (ePACs) in the DA-induced persistent change in IA using the PKA specific antagonist Rp-cAMP and the ePAC specific agonist 8-pCPT-2′-O-Me-cAMP. The PKA antagonist blocked the DA induced increases in LP IA Gmax, whereas the ePAC agonist did not induce an increase in LP IA Gmax. Finally we tested whether extracellular signal regulated kinase (Erk) activity was necessary for the persistent effect by co-application of Erk antagonists PD98059 or U0126 with DA. Erk antagonism blocked the DA induced persistent increase in LP IA. Conclusions These data suggest that dopaminergic tone regulates ion channel density in a concentration and time dependent manner. The D1R- PKA axis, along with Erk and mTOR are necessary for the persistent increase in LP IA induced by high affinity D1Rs.
Collapse
|
22
|
PKA and ERK1/2 are involved in dopamine D₁ receptor-induced heterologous desensitization of the δ opioid receptor. Life Sci 2013; 92:1101-9. [PMID: 23624231 DOI: 10.1016/j.lfs.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
AIMS Chronic administration of cocaine attenuates delta opioid receptor (DOPR) signaling in the striatum and the desensitization is mediated by the indirect actions of cocaine on dopamine D1 receptors (D1R). In addition, DOPR and D1R co-exist in some rat striatal neurons. In the present study, we examined the underlying mechanism of DOPR desensitization by D1R activation. MAIN METHODS NG 108-15 cells stably expressing HA-rat D1 receptor (HA-D1R) and Chinese hamster ovary (CHO) cells stably expressing both FLAG-mouse DOPR (FLAG-DOPR) and HA-D1R were used as the cell models. Receptor binding, [(35)S]GTPγS binding, receptor phosphorylation and western blot were conducted to examine DOPR affinity, expression, internalization, downregulation, desensitization, phosphorylation and phosphorylated ERK1/2. KEY FINDINGS Pretreatment with either the DOPR agonist DPDPE or the D1R agonist SKF-82958 for 30min attenuated DPDPE-stimulated [(35)S]GTPγS binding to G proteins, demonstrating homologous and heterologous desensitization of the DOPR, respectively. SKF-82958 pretreatment did not affect the level of DOPR or affinity of DOPR antagonist or agonists, nor did it induce phosphorylation, internalization or down-regulation of the DOPR in the CHO-FLAG-DOPR/HA-D1R cells. Pretreatment of cells with inhibitors of PKA, MEK1 and PI3K, but not PKC, attenuated SKF-82958-induced desensitization of the DOPR. The D1R agonist SKF-82958 enhanced phosphorylation of ERK1/2, and pretreatment with inhibitors of MEK1 and PI3K, but not PKA and PKC, reduced the effect. These results indicate that activation of ERK1/2 and/or PKA, but not PKC, is involved in D1 receptor-induced heterologous desensitization of the DOPR. SIGNIFICANCE This study provides possible mechanisms underlying D1R activation-induced DOPR desensitization.
Collapse
|
23
|
Abstract
Rho family GTPases control a diverse range of cellular processes, and their deregulation has been implicated in human cancer. Guanine nucleotide dissociation inhibitors (GDIs) bind and sequester GTPases in the cytosol, restricting their actions. RhoGDI2 is a member of the GDI family that acts as a metastasis suppressor in a variety of cancer types; however, very little is known about the regulation and function of this protein. Here we present a mechanism for inactivation of RhoGDI2 via PKC phosphorylation of Ser 31 in a region that contacts GTPases. In cells, RhoGDI2 becomes rapidly phosphorylated at Ser 31 in response to phorbol 12-myristate 13-acetate stimulation. Based on the effects of pharmacological inhibitors and knockdown by siRNA, we determine that conventional type PKCα is responsible for this phosphorylation. Phospho-mimetic S31E-RhoGDI2 exhibits reduced binding to Rac1 relative to wild type, with a concomitant failure to reduce levels of activated endogenous Rac1 or remove Rac1 from membranes. These results reveal a mechanism of down-regulation of RhoGDI2 activity through PKC mediated phosphorylation of Ser 31. We hypothesize that this mechanism may serve to neutralize RhoGDI2 function in tumors that express RhoGDI2 and active PKCα.
Collapse
|
24
|
Wang L, Fu C, Cui Y, Xie Y, Yuan Y, Wang X, Chen H, Huang BR. The Ran-binding protein RanBPM can depress the NF-κB pathway by interacting with TRAF6. Mol Cell Biochem 2011; 359:83-94. [DOI: 10.1007/s11010-011-1002-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
|
25
|
Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J. Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism. Neurochem Int 2011; 58:684-92. [DOI: 10.1016/j.neuint.2011.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
26
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1850] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|
27
|
Rankin ML, Sibley DR. Constitutive phosphorylation by protein kinase C regulates D1 dopamine receptor signaling. J Neurochem 2010; 115:1655-67. [PMID: 20969574 DOI: 10.1111/j.1471-4159.2010.07074.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.
Collapse
Affiliation(s)
- Michele L Rankin
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, USA
| | | |
Collapse
|