1
|
Chowdhury R, Bhuia MS, Rakib AI, Hasan R, Coutinho HDM, Araújo IM, de Menezes IRA, Islam MT. Assessment of Quercetin Antiemetic Properties: In Vivo and In Silico Investigations on Receptor Binding Affinity and Synergistic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:4189. [PMID: 38140516 PMCID: PMC10747098 DOI: 10.3390/plants12244189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Quercetin (QUA), a flavonoid compound, is ubiquitously found in plants and has demonstrated a diverse range of biological activities. The primary objective of the current study is to assess the potential antiemetic properties of QUA using an in vivo and in silico approach. In this experiment, 4-day-old chicks were purchased to induce emesis by orally administering copper sulfate pentahydrate (CuSO4·5H2O) at a dose of 50 mg/kg (orally). Domperidone (DOM) (6 mg/kg), Hyoscine (HYS) (21 mg/kg), and Ondansetron (OND) (5 mg/kg) were treated as positive controls (PCs), and distilled water and a trace amount of Tween 80 mixture was employed as a negative control (NC). QUA was given orally at two distinct doses (25 and 50 mg/kg). Additionally, QUA (50 mg/kg) and PCs were administered separately or in combination to assess their antagonistic or synergistic effects on the chicks. The binding affinity of QUA and referral ligands towards the serotonin receptor (5HT3), dopamine receptors (D2 and D3), and muscarinic acetylcholine receptors (M1-M5) were estimated, and ligand-receptor interactions were visualized through various computational tools. In vivo findings indicate that QUA (25 and 50 mg/kg) has a significant effect on reducing the number of retches (16.50 ± 4.65 and 10.00 ± 4.19 times) and increasing the chick latency period (59.25 ± 4.75 and 94.25 ± 4.01 s), respectively. Additionally, QUA (50 mg/kg) in combination with Domperidone and Ondansetron exhibited superior antiemetic effects, reducing the number of retches and increasing the onset of emesis-inducing time. Furthermore, it is worth noting that QUA exhibited the strongest binding affinity against the D2 receptor with a value of -9.7 kcal/mol through the formation of hydrogen and hydrophobic bonds. In summary, the study found that QUA exhibited antiemetic activity in chicks, potentially by interacting with the D2 receptor pathway.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.C.); (M.S.B.); (A.I.R.); (R.H.)
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.C.); (M.S.B.); (A.I.R.); (R.H.)
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.C.); (M.S.B.); (A.I.R.); (R.H.)
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.C.); (M.S.B.); (A.I.R.); (R.H.)
| | | | - Isaac Moura Araújo
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, Brazil; (H.D.M.C.); (I.M.A.)
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, Brazil; (H.D.M.C.); (I.M.A.)
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (R.C.); (M.S.B.); (A.I.R.); (R.H.)
| |
Collapse
|
2
|
Nguyen TM, Ngoc DTM, Choi JH, Lee CH. Unveiling the Neural Environment in Cancer: Exploring the Role of Neural Circuit Players and Potential Therapeutic Strategies. Cells 2023; 12:1996. [PMID: 37566075 PMCID: PMC10417274 DOI: 10.3390/cells12151996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Dinh Thi Minh Ngoc
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| |
Collapse
|
3
|
Bai L, Li X, Yang Y, Zhao R, White EZ, Danaher A, Bowen NJ, Hinton CV, Cook N, Li D, Wu AY, Qui M, Du Y, Fu H, Kucuk O, Wu D. Bromocriptine monotherapy overcomes prostate cancer chemoresistance in preclinical models. Transl Oncol 2023; 34:101707. [PMID: 37271121 PMCID: PMC10248552 DOI: 10.1016/j.tranon.2023.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023] Open
Abstract
Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Lijuan Bai
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhao
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Elshaddai Z. White
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Alira Danaher
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Nathan J. Bowen
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Nicholas Cook
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Dehong Li
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Alyssa Y. Wu
- Emory College of Arts and Sciences, Atlanta, GA, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Cancer Research and Therapeutic Development and Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- MetCure Therapeutics LLC, Atlanta, GA, USA
| |
Collapse
|
4
|
Bono F, Tomasoni Z, Mutti V, Sbrini G, Kumar R, Longhena F, Fiorentini C, Missale C. G Protein-Dependent Activation of the PKA-Erk1/2 Pathway by the Striatal Dopamine D1/D3 Receptor Heteromer Involves Beta-Arrestin and the Tyrosine Phosphatase Shp-2. Biomolecules 2023; 13:473. [PMID: 36979407 PMCID: PMC10046256 DOI: 10.3390/biom13030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The heteromer composed of dopamine D1 and D3 receptors (D1R-D3R) has been defined as a structure able to trigger Erk1/2 and Akt signaling in a G protein-independent, beta-arrestin 1-dependent way that is physiologically expressed in the ventral striatum and is likely involved in the control of locomotor activity. Indeed, abnormal levels of D1R-D3R heteromer in the dorsal striatum have been correlated with the development of L-DOPA-induced dyskinesia (LID) in Parkinson's disease patients, a motor complication associated with striatal D1R signaling, thus requiring Gs protein and PKA activity to activate Erk1/2. Therefore, to clarify the role of the D1R/D3R heteromer in LID, we investigated the signaling pathway induced by the heteromer using transfected cells and primary mouse striatal neurons. Collectively, we found that in both the cell models, D1R/D3R heteromer-induced activation of Erk1/2 exclusively required the D1R molecular effectors, such as Gs protein and PKA, with the contribution of the phosphatase Shp-2 and beta-arrestins, indicating that heterodimerization with the D3R abolishes the specific D3R-mediated signaling but strongly allows D1R signals. Therefore, while in physiological conditions the D1R/D3R heteromer could represent a mechanism that strengthens the D1R activity, its pathological expression may contribute to the abnormal PKA-Shp-2-Erk1/2 pathway connected with LID.
Collapse
Affiliation(s)
- Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulia Sbrini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rajesh Kumar
- Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Francesca Longhena
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
5
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
6
|
Mutti V, Bono F, Tomasoni Z, Bontempi L, Guglielmi A, Bolognin S, Schwamborn JC, Missale C, Fiorentini C. Structural Plasticity of Dopaminergic Neurons Requires the Activation of the D3R-nAChR Heteromer and the PI3K-ERK1/2/Akt-Induced Expression of c-Fos and p70S6K Signaling Pathway. Mol Neurobiol 2022; 59:2129-2149. [PMID: 35044626 PMCID: PMC9016044 DOI: 10.1007/s12035-022-02748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
We have previously shown that the heteromer composed by the dopamine D3 receptor (D3R) and the nicotinic acetylcholine receptor (nAChR) (D3R-nAChR heteromer) is expressed in dopaminergic neurons, activated by nicotine and represents the molecular unit that, in these neurons, contributes to the modulation of critical events such as structural plasticity and neuroprotection. We now extended this study by investigating the D3R-nAChR heteromer properties using various cell models such as transfected HEK293 cells, primary cultures of mouse dopaminergic neurons and human dopaminergic neurons derived from induced pluripotent stem cells. We found that the D3R-nAChR heteromer is the molecular effector that transduces the remodeling properties not only associated with nicotine but also with D3R agonist stimulation: neither nAChR nor D3R, in fact, when express as monomers, are able to elicit these effects. Moreover, strong and sustained activation of the PI3K-ERK1/2/Akt pathways is coupled with D3R-nAChR heteromer stimulation, leading to the expression of the immediate-early gene c-Fos and to sustained phosphorylation of cytosolic p70 ribosomal S6 kinase (p70S6K), critical for dendritic remodeling. By contrast, while D3R stimulation results in rapid and transient activation of both Erk1/2 and Akt, that is PI3K-dependent, stimulation of nAChR is associated with persistent activation of Erk1/2 and Akt, in a PI3K-independent way. Thus, the D3R-nAChR heteromer and its ability to trigger the PI3K-ERK1/2/Akt signaling pathways may represent a novel target for preserving dopaminergic neurons healthy and for conferring neuronal protection against injuries.
Collapse
Affiliation(s)
- Veronica Mutti
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Zaira Tomasoni
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Leonardo Bontempi
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Adele Guglielmi
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
7
|
Kiss B, Krámos B, Laszlovszky I. Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D 3 Receptors in the Brain in vivo. Front Psychiatry 2022; 13:785592. [PMID: 35401257 PMCID: PMC8987915 DOI: 10.3389/fpsyt.2022.785592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Dysfunctions of the dopaminergic system are believed to play a major role in the core symptoms of schizophrenia such as positive, negative, and cognitive symptoms. The first line of treatment of schizophrenia are antipsychotics, a class of medications that targets several neurotransmitter receptors in the brain, including dopaminergic, serotonergic, adrenergic and/or muscarinic receptors, depending on the given agent. Although the currently used antipsychotics display in vitro activity at several receptors, majority of them share the common property of having high/moderate in vitro affinity for dopamine D2 receptors (D2Rs) and D3 receptors (D3Rs). In terms of mode of action, these antipsychotics are either antagonist or partial agonist at the above-mentioned receptors. Although D2Rs and D3Rs possess high degree of homology in their molecular structure, have common signaling pathways and similar in vitro pharmacology, they have different in vivo pharmacology and therefore behavioral roles. The aim of this review, with summarizing preclinical and clinical evidence is to demonstrate that while currently used antipsychotics display substantial in vitro affinity for both D3Rs and D2Rs, only very few can significantly occupy D3Rs in vivo. The relative importance of the level of endogenous extracellular dopamine in the brain and the degree of in vitro D3Rs receptor affinity and selectivity as determinant factors for in vivo D3Rs occupancy by antipsychotics, are also discussed.
Collapse
Affiliation(s)
- Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | | |
Collapse
|
8
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
9
|
Wei SZ, Yao XY, Wang CT, Dong AQ, Li D, Zhang YT, Ren C, Zhang JB, Mao CJ, Wang F, Liu CF. Pramipexole regulates depression-like behavior via dopamine D3 receptor in a mouse model of Parkinson's disease. Brain Res Bull 2021; 177:363-372. [PMID: 34699917 DOI: 10.1016/j.brainresbull.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Depression is one of the strongest predictors of quality of life in patients with Parkinson's disease (PD). Despite the high prevalence of depression, there is no clear guidance for its treatment in PD because the evidence for the efficacy of most antidepressants remains insufficient. Pramipexole, a dopamine agonist, is one of the few drugs that has proven to be clinically useful. However, the underlying mechanisms of antidepressive effects of pramipexole are still unknown. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, dopamine D2 receptor (DRD2) and D3 receptor (DRD3) knockout mice were used in our study. Compared with other dopamine D2-like receptor agonists and madopar, pramipexole improved depression-like behavior and alleviate bradykinesia in an MPTP-induced mouse model of PD. Pramipexole significantly improved depression-like behavior in DRD2-/- mice but not in DRD3-/- mice. These results demonstrate that the antidepressive effect of pramipexole is mediated by DRD3 but not DRD2. Our findings highlight the need to develop novel dopamine agonists specifically targeting DRD3 for the treatment of depression in PD in the future.
Collapse
Affiliation(s)
- Shi-Zhuang Wei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chen-Tao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - An-Qi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Ren
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Department of Neurology, Suqian First Hospital, Suqian, China; Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
10
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2021; 42:2109-2120. [PMID: 34057683 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Rescue of striatal long-term depression by chronic mGlu5 receptor negative allosteric modulation in distinct dystonia models. Neuropharmacology 2021; 192:108608. [PMID: 33991565 DOI: 10.1016/j.neuropharm.2021.108608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.
Collapse
|
12
|
Belkacemi L, Zhong W, Darmani NA. Signal transduction pathways involved in dopamine D 2 receptor-evoked emesis in the least shrew (Cryptotis parva). Auton Neurosci 2021; 233:102807. [PMID: 33865060 DOI: 10.1016/j.autneu.2021.102807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
With its five receptor subtypes (D1-5), dopamine is implicated in a myriad of neurological illnesses. Dopamine D2 receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D2 receptors evoke vomiting remains unknown. Phosphatidylinositol 3-kinases (PI3K)- and protein kinase C (PKC)-related signaling cascades stimulate vomiting post-injection of various emetogens in emetically competent animals. This study investigated potential mechanisms involved in dopamine D2 receptor-mediated vomiting using least shrews. We found that vomiting evoked by the selective dopamine D2 receptor agonist quinpirole (2 mg/kg, i.p.) was significantly suppressed by: i) a dopamine D2 preferring antagonist, sulpiride (s.c.); ii) a selective PI3K inhibitor, LY294002 (i.p.); iii) a PKCαβII inhibitor, GF109203X (i.p.); and iv) a selective inhibitor of extracellular signal-regulated protein kinase1/2 (ERK1/2), U0126 (i.p.). Quinpirole-evoked c-fos immunofluorescence in the nucleus tractus solitarius (NTS) was suppressed by pretreatment with sulpiride (8 mg/kg, s.c.). Western blot analysis of shrew brainstem emetic loci protein lysates revealed a significant and time-dependent increase in phosphorylation of Akt (protein kinase B (PKB)) at Ser473 following a 30-min exposure to quinpirole (2 mg/kg, i.p.). Pretreatment with effective antiemetic doses of sulpiride, LY294002, GF109203X, or U0126 significantly reduced quinpirole-stimulated phosphorylation of emesis-associated proteins including p-85PI3K, mTOR (Ser2448/2481), PKCαβII (Thr638/641), ERK1/2 (Thr202/204), and Akt (Ser473). Our results substantiate the implication of PI3K/mTOR/Akt and PI3K/PKCαβII/ERK1/2/Akt signaling pathways in dopamine D2 receptor-mediated vomiting. Potential novel antiemetics targeting emetic proteins associated with these signaling cascades may offer enhanced potency and/or efficacy against emesis.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
13
|
Mangili F, Giardino E, Treppiedi D, Barbieri AM, Catalano R, Locatelli M, Lania AG, Spada A, Arosio M, Mantovani G, Peverelli E. Beta-Arrestin 2 Is Required for Dopamine Receptor Type 2 Inhibitory Effects on AKT Phosphorylation and Cell Proliferation in Pituitary Tumors. Neuroendocrinology 2021; 111:568-579. [PMID: 32512568 DOI: 10.1159/000509219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Dopamine receptor type 2 (DRD2) agonists are the first-choice treatment for prolactin-secreting pituitary tumors but are poorly effective in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). DRD2 reduces AKT phosphorylation in lactotrophs, but no data are available in NF-PitNETs. DRD2 effects on AKT are mediated by a β-arrestin 2-dependent mechanism in mouse striatum. The aim of this study was to investigate DRD2 effects on AKT phosphorylation and cell proliferation in human primary cultured NF-PitNET cells and in rat tumoral lactotroph cells MMQ, and to test β-arrestin 2 involvement. We found that the DRD2 agonist BIM53097 induced a reduction of the p-AKT/total-AKT ratio in MMQ (-32.8 ± 17.6%, p < 0.001 vs. basal) and in a subset (n = 15/41, 36.6%) of NF-PitNETs (subgroup 1). In the remaining NF-PitNETs (subgroup 2), BIM53097 induced an increase in p-AKT. The ability of BIM53097 to reduce p-AKT correlated with its antimitotic effect, since the majority of subgroup 1 NF-PitNETs was responsive to BIM53097, and nearly all subgroup 2 NF-PitNETs were resistant. β-Arrestin 2 was expressed in MMQ and in 80% of subgroup 1 NF-PitNETs, whereas it was undetectable in 77% of subgroup 2 NF-PitNETs. In MMQ, β-arrestin 2 silencing prevented DRD2 inhibitory effects on p-AKT and cell proliferation. Accordingly, β-arrestin 2 transfection in subgroup 2 NF-PitNETs conferred to BIM53097 the ability to inhibit both p-AKT and cell growth. In conclusion, we demonstrated that β-arrestin 2 is required for DRD2 inhibitory effects on AKT phosphorylation and cell proliferation in MMQ and NF-PitNETs, paving the way for a potential role of β-arrestin 2 as a biomarker predicting NF-PitNETs' responsiveness to treatment with dopamine agonists.
Collapse
Affiliation(s)
- Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Science, Sapienza University of Rome, Rome, Italy
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Humanitas University, Rozzano, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy,
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
15
|
Barr JL, Unterwald EM. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118746. [PMID: 32454064 DOI: 10.1016/j.bbamcr.2020.118746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase implicated in numerous physiological processes and cellular functions through its ability to regulate the function of many proteins, including transcription factors and structural proteins. GSK-3β has been demonstrated to function as a regulator of multiple behavioral processes induced by drugs of abuse, particularly psychostimulant drugs. In this review, we provide an overview of the regulation of GSK-3β activity produced by psychostimulants, and the role of GSK-3β signaling in psychostimulant-induced behaviors including drug reward, associative learning and memory which play a role in the maintenance of drug-seeking. Evidence supports the conclusion that GSK-3β is an important component of the actions of psychostimulant drugs and that GSK-3β is a valid target for developing novel therapeutics. Additional studies are required to examine the role of GSK-3β in distinct cell types within the mesolimbic and memory circuits to further elucidate the mechanisms related to the acquisition, consolidation, and recall of drug-related memories, and potentially countering neuroadaptations that reinforce drug-seeking behaviors that maintain drug dependence.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 PMCID: PMC7105616 DOI: 10.3389/fphar.2020.00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
17
|
Hasbi A, Nguyen T, Rahal H, Manduca JD, Miksys S, Tyndale RF, Madras BK, Perreault ML, George SR. Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biol Sex Differ 2020; 11:8. [PMID: 32087746 PMCID: PMC7035642 DOI: 10.1186/s13293-020-00285-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Depression and anxiety are more common among females than males and represent a leading cause of disease-related disability in women. Since the dopamine D1-D2 heteromer is involved in depression- and anxiety-like behavior, the possibility that the receptor complex may have a role in mediating sex differences in such behaviors and related biochemical signaling was explored. In non-human primate caudate nucleus and in rat striatum, females expressed higher density of D1-D2 heteromer complexes and a greater number of D1-D2 expressing neurons compared to males. In rat, the sex difference in D1-D2 expression levels occurred even though D1 receptor expression was lower in female than in male with no difference in D2 receptor expression. In behavioral tests, female rats showed faster latency to depressive-like behavior and a greater susceptibility to the pro-depressive and anxiogenic-like effects of D1-D2 heteromer activation by low doses of SKF 83959, all of which were ameliorated by the selective heteromer disrupting peptide, TAT-D1. The sex difference observed in the anxiety test correlated with differences in low-frequency delta and theta oscillations in the nucleus accumbens. Analysis of signaling pathways revealed that the sex difference in D1-D2 heteromer expression led to differences in basal and heteromer-stimulated activities of two important signaling pathways, BDNF/TrkB and Akt/GSK3/β-catenin. These results suggest that the higher D1-D2 heteromer expression in female may significantly increase predisposition to depressive-like and anxiety-like behavior in female animals.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Haneen Rahal
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Joshua D Manduca
- Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Sharon Miksys
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,McLean Hospital, Belmont, USA
| | | | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Chang PK, Chu J, Tsai YT, Lai YH, Chen JC. Dopamine D 3 receptor and GSK3β signaling mediate deficits in novel object recognition memory within dopamine transporter knockdown mice. J Biomed Sci 2020; 27:16. [PMID: 31900153 PMCID: PMC6942274 DOI: 10.1186/s12929-019-0613-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over-stimulation of dopamine signaling is thought to underlie the pathophysiology of a list of mental disorders, such as psychosis, mania and attention-deficit/hyperactivity disorder. These disorders are frequently associated with cognitive deficits in attention or learning and memory, suggesting that persistent activation of dopamine signaling may change neural plasticity to induce cognitive or emotional malfunction. METHODS Dopamine transporter knockdown (DAT-KD) mice were used to mimic a hyper-dopamine state. Novel object recognition (NOR) task was performed to assess the recognition memory. To test the role of dopamine D3 receptor (D3R) on NOR, DAT-KD mice were treated with either a D3R antagonist, FAUC365 or by deletion of D3R. Total or phospho-GSK3 and -ERK1/2 signals in various brain regions were measured by Western blot analyses. To examine the impact of GSK3 signal on NOR, wild-type mice were systemically treated with GSK3 inhibitor SB216763 or, micro-injected with lentiviral shRNA of GSK3β or GSK3α in the medial prefrontal cortex (mPFC). RESULTS We confirmed our previous findings that DAT-KD mice displayed a deficit in NOR memory, which could be prevented by deletion of D3R or exposure to FAUC365. In WT mice, p-GSK3α and p-GSK3β were significantly decreased in the mPFC after exposure to novel objects; however, the DAT-KD mice exhibited no such change in mPFC p-GSK3α/β levels. DAT-KD mice treated with FAUC365 or with D3R deletion exhibited restored novelty-induced GSK3 dephosphorylation in the mPFC. Moreover, inhibition of GSK3 in WT mice diminished NOR performance and impaired recognition memory. Lentiviral shRNA knockdown of GSK3β, but not GSK3α, in the mPFC of WT mice also impaired NOR. CONCLUSION These findings suggest that D3R acts via GSK3β signaling in the mPFC to play a functional role in NOR memory. In addition, treatment with D3R antagonists may be a reasonable approach for ameliorating cognitive impairments or episodic memory deficits in bipolar disorder patients.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung Chu
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ting Tsai
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Heng Lai
- Department of Medical Imaging and Radiological Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linko, Taiwan.
| |
Collapse
|
19
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 DOI: 10.3389/fphar.2020.00344/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/20/2023] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
20
|
Barroso-Chinea P, Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Salas-Hernandez J, Rodriguez-Nuñez J, Febles-Casquero A, Cruz-Muros I, Afonso-Oramas D, Abreu-Gonzalez P, Moratalla R, Millan MJ, Gonzalez-Hernandez T. DRD3 (dopamine receptor D3) but not DRD2 activates autophagy through MTORC1 inhibition preserving protein synthesis. Autophagy 2019; 16:1279-1295. [PMID: 31538542 DOI: 10.1080/15548627.2019.1668606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence shows that autophagy is deficient in neurodegenerative and psychiatric diseases, and that its induction may have beneficial effects in these conditions. However, as autophagy shares signaling pathways with cell death and interferes with protein synthesis, prolonged use of autophagy inducers available nowadays is considered unwise. The search for novel autophagy inducers indicates that DRD2 (dopamine receptor 2)-DRD3 ligands may also activate autophagy, though critical aspects of the action mechanisms and effects of dopamine ligands on autophagy are still unknown. In order to shed light on this issue, DRD2- and DRD3-overexpressing cells and drd2 KO, drd3 KO and wild-type mice were treated with the DRD2-DRD3 agonist pramipexole. The results revealed that pramipexole induces autophagy through MTOR inhibition and a DRD3-dependent but DRD2-independent mechanism. DRD3 activated AMPK followed by inhibitory phosphorylation of RPTOR, MTORC1 and RPS6KB1 inhibition and ULK1 activation. Interestingly, despite RPS6KB1 inhibition, the activity of RPS6 was maintained through activation of the MAPK1/3-RPS6KA pathway, and the activity of MTORC1 kinase target EIF4EBP1 along with protein synthesis and cell viability, were also preserved. This pattern of autophagy through MTORC1 inhibition without suppression of protein synthesis, contrasts with that of direct allosteric and catalytic MTOR inhibitors and opens up new opportunities for G protein-coupled receptor ligands as autophagy inducers in the treatment of neurodegenerative and psychiatric diseases. ABBREVIATIONS AKT/Protein kinase B: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; BECN1: beclin 1; EGFP: enhanced green fluorescent protein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GPCR; G protein-coupled receptor; GFP: green fluorescent protein; HEK: human embryonic kidney; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MDA: malonildialdehyde; MTOR: mechanistic target of rapamycin kinase; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PPX: pramipexole; RPTOR/raptor: regulatory associated protein of MTOR, complex 1; RPS6: ribosomal protein S6; RPS6KA/p90S6K: ribosomal protein S6 kinase A; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Javier Castro-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain
| | - Josmar Salas-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Julia Rodriguez-Nuñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain
| | - Alejandro Febles-Casquero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| | - Pedro Abreu-Gonzalez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain
| | - Rosario Moratalla
- Departamento de Biología Funcional y de Sistemas. Instituto Cajal, Consejo Superior de Investigaciones Científicas , Madrid, Spain.,CIBERNED, ISCIII , Madrid, Spain
| | - Mark J Millan
- Department of Psychopharmacology, Institut Centre de Recherches Servier , Paris, France
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna , Tenerife, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna , Tenerife, Spain
| |
Collapse
|
21
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
22
|
Li Y, Xie X, Xing H, Yuan X, Wang Y, Jin Y, Wang J, Vreugdenhil M, Zhao Y, Zhang R, Lu C. The Modulation of Gamma Oscillations by Methamphetamine in Rat Hippocampal Slices. Front Cell Neurosci 2019; 13:277. [PMID: 31281244 PMCID: PMC6598082 DOI: 10.3389/fncel.2019.00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gamma frequency oscillations (γ, 30–100 Hz) have been suggested to underlie various cognitive and motor functions. The psychotomimetic drug methamphetamine (MA) enhances brain γ oscillations associated with changes in psychomotor state. Little is known about the cellular mechanisms of MA modulation on γ oscillations. We explored the effects of multiple intracellular kinases on MA modulation of γ induced by kainate in area CA3 of rat ventral hippocampal slices. We found that dopamine receptor type 1 and 2 (DR1 and DR2) antagonists, the serine/threonine kinase PKB/Akt inhibitor and N-methyl-D-aspartate receptor (NMDAR) antagonists prevented the enhancing effect of MA on γ oscillations, whereas none of them affected baseline γ strength. Protein kinase A, phosphoinositide 3-kinase and extracellular signal-related kinases inhibitors had no effect on MA. We propose that the DR1/DR2-Akt-NMDAR pathway plays a critical role for the MA enhancement of γ oscillations. Our study provides an new insight into the mechanisms of acute MA on MA-induced psychosis.
Collapse
Affiliation(s)
- Yanan Li
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Xin'e Xie
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Hang Xing
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiang Yuan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yuan Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yikai Jin
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Jiangang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ying Zhao
- Key Laboratory of Clinical Psychopharmacology, School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
23
|
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the Dopamine D 2 Receptor: A Pharmacological Perspective. J Pharmacol Exp Ther 2019; 370:111-126. [PMID: 31000578 DOI: 10.1124/jpet.119.256818] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jeffrey D Neighbors
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Richard B Mailman
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Raymond J Hohl
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
24
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
25
|
Dopamine Receptor Subtypes Differentially Regulate Autophagy. Int J Mol Sci 2018; 19:ijms19051540. [PMID: 29786666 PMCID: PMC5983733 DOI: 10.3390/ijms19051540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023] Open
Abstract
Some dopamine receptor subtypes were reported to participate in autophagy regulation, but their exact functions and mechanisms are still unclear. Here we found that dopamine receptors D2 and D3 (D2-like family) are positive regulators of autophagy, while dopamine receptors D1 and D5 (D1-like family) are negative regulators. Furthermore, dopamine and ammonia, the two reported endogenous ligands of dopamine receptors, both can induce dopamine receptor internalization and degradation. In addition, we found that AKT (protein kinase B)-mTOR (mechanistic target of rapamycin) and AMPK (AMP-activated protein kinase) pathways are involved in DRD3 (dopamine receptor D3) regulated autophagy. Moreover, autophagy machinery perturbation inhibited DRD3 degradation and increased DRD3 oligomer. Therefore, our study investigated the functions and mechanisms of dopamine receptors in autophagy regulation, which not only provides insights into better understanding of some dopamine receptor-related neurodegeneration diseases, but also sheds light on their potential treatment in combination with autophagy or mTOR pathway modulations.
Collapse
|
26
|
Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling. Neural Plast 2018. [PMID: 29531524 PMCID: PMC5817382 DOI: 10.1155/2018/4196961] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R-) preferring dopaminergic (DA) agonists used as adjunctive therapeutics for the treatment resistant depression (TRD). While the exact antidepressant mechanism of action remains uncertain, a role for D3R in the restoration of impaired neuroplasticity occurring in TRD has been proposed. Since D3R agonists are highly expressed on DA neurons in humans, we studied the effect of ropinirole and pramipexole on structural plasticity using a translational model of human-inducible pluripotent stem cells (hiPSCs). Two hiPSC clones from healthy donors were differentiated into midbrain DA neurons. Ropinirole and pramipexole produced dose-dependent increases of dendritic arborization and soma size after 3 days of culture, effects antagonized by the selective D3R antagonists SB277011-A and S33084 and by the mTOR pathway kinase inhibitors LY294002 and rapamycin. All treatments were also effective in attenuating the D3R-dependent increase of p70S6-kinase phosphorylation. Immunoneutralisation of BDNF, inhibition of TrkB receptors, and blockade of MEK-ERK signaling likewise prevented ropinirole-induced structural plasticity, suggesting a critical interaction between BDNF and D3R signaling pathways. The highly similar profiles of data acquired with DA neurons derived from two hiPSC clones underpin their reliability for characterization of pharmacological agents acting via dopaminergic mechanisms.
Collapse
|
27
|
Seo SK, Kim N, Lee JH, Kim SM, Lee SY, Bae JW, Hwang KK, Kim DW, Koch WJ, Cho MC. β-arrestin2 Affects Cardiac Progenitor Cell Survival through Cell Mobility and Tube Formation in Severe Hypoxia. Korean Circ J 2018; 48:296-309. [PMID: 29625512 PMCID: PMC5889979 DOI: 10.4070/kcj.2017.0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives β-arrestin2 (β-arr2) basically regulates multiple signaling pathways in mammalian cells by desensitization and internalization of G-protein coupled receptors (GPCRs). We investigated impacts of β-arr2 on survival, mobility, and tube formation of cardiac progenitor cells (CPCs) obtained from wild-type (WT) mouse (CPC-WT), and β-arr2 knock-out (KO) mouse (CPC-KO) cultured in presence or absence of serum and oxygen as non-canonical roles in GPCR system. Methods CPCs were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 -based media containing fetal bovine serum and growth factors. Survival of 2 types of CPCs in hypoxia and/or serum deprivation was measured by fluorescence-activated cell sorting. Wound healing ability, and tube formation ability on Matrigel of 2 kinds of CPCs were compared in normoxic and hypoxic cultures. Protein expression related to survival and mobility were measured with the Western blot for each culture conditions. Results CPC-KO showed significantly worse mobility in the wound healing assay and in tube formation on Matrigel especially in hypoxic culture than did the CPC-WT. Also, CPC-KO showed significantly higher apoptosis fraction in both normoxic and hypoxic cultures than did the CPC-WT. Expression of proteins associated with cell survival and mobility, e.g., protein kinase B (Akt), β-catenin, and glycogen synthase kinase-3β (GSK-3β) was significantly worse in CPC-KO. Conclusions The CPC-KO had significantly worse cell mobility, tube formation ability, and survival than the CPC-WT, especially in the hypoxic cultures. Apparently, β-arr2 is important on CPC survival by means of mobility and tube formation in myocardial ischemia.
Collapse
Affiliation(s)
- Seul Ki Seo
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Nari Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ju Hee Lee
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Min Kim
- Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Jang Whan Bae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea. .,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Kyung Kuk Hwang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Dong Woon Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Myeong Chan Cho
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Chungbuk Regional Cardiocerebrovascular Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
28
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
29
|
Nash AI. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat 2017; 83-84:59-68. [DOI: 10.1016/j.jchemneu.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
|
30
|
Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy. Neuroscience 2017; 353:147-165. [PMID: 28438613 DOI: 10.1016/j.neuroscience.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (p<0.001), hippocampal (p<0.001) and cortical (p<0.05) IGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; p<0.001), and changes in neurotransmitters (VGLUT2, Tyrosine hydroxylase, GABA, ChAT). Furthermore, naïve stressed rats recorded a significant decrease in post-synaptic marker (PSD-95; p<0.01) and synaptic regulator (CaMKIIα; p<0.001). As part of the synaptic response to a decrease in brain CaMKIIα, small ion conductance channel (KCa2.2) was upregulated in the brain of naïve stressed rats (p<0.01). After a PET, an increase in IGF-1 (p<0.05) and IGF-1R was recorded in the Stress-PET group (p<0.001). As such, hippocampal (p<0.001), but not cortical (ns) synaptophysin expression increased in Stress-PET. Although PSD-95 was relatively unchanged in the hippocampus and PFC, CaMKIIα (p<0.001) and KCa2.2 (p<0.01) were upregulated in Stress-PET, and may be involved in extinction of fear memory-related synaptic potentials. These changes were also associated with a normalized neurotransmitter function, and a significant reduction in open space avoidance; when the animals were assessed in elevated plus maze (EPM). In addition to a decrease in IGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (p<0.05) and after a PET (Stress-PET; p<0.001). Furthermore, this was linked with a significant increase in HMGB1 (Hippocampus: p<0.001, PFC: p<0.05) and TLR4 expression (Hippocampus: p<0.01; PFC: ns) in the neurons. Taken together, this study showed that traumatic stress and subsequent PET involves an event-dependent alteration of IGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET.
Collapse
|
31
|
Lukacova K, Pavukova E, Kostal L, Bilcik B, Kubikova L. Dopamine D3 receptors modulate the rate of neuronal recovery, cell recruitment in Area X, and song tempo after neurotoxic damage in songbirds. Neuroscience 2016; 331:158-68. [DOI: 10.1016/j.neuroscience.2016.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
32
|
Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and D₂ receptors. J Neurochem 2016; 136:1037-51. [PMID: 26685100 DOI: 10.1111/jnc.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023]
Abstract
Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.
Collapse
Affiliation(s)
- Nathalie Schmieg
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Cristina Rocchi
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Mark J Millan
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| |
Collapse
|
33
|
Mas S, Gassó P, Lafuente A. Applicability of gene expression and systems biology to develop pharmacogenetic predictors; antipsychotic-induced extrapyramidal symptoms as an example. Pharmacogenomics 2015; 16:1975-88. [PMID: 26556470 DOI: 10.2217/pgs.15.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacogenetics has been driven by a candidate gene approach. The disadvantage of this approach is that is limited by our current understanding of the mechanisms by which drugs act. Gene expression could help to elucidate the molecular signatures of antipsychotic treatments searching for dysregulated molecular pathways and the relationships between gene products, especially protein-protein interactions. To embrace the complexity of drug response, machine learning methods could help to identify gene-gene interactions and develop pharmacogenetic predictors of drug response. The present review summarizes the applicability of the topics presented here (gene expression, network analysis and gene-gene interactions) in pharmacogenetics. In order to achieve this, we present an example of identifying genetic predictors of extrapyramidal symptoms induced by antipsychotic.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amelia Lafuente
- Department of Pathological Anatomy, Pharmacology & Microbiology, University of Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
34
|
Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X, Yu J. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 2015; 48:5-12. [PMID: 26548401 DOI: 10.3892/ijo.2015.3234] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a process through which epithelial cells trans-differentiate and acquire an aggressive mesenchymal phenotype. In tumor cells, EMT is a vital step of tumor progression and metastasis. Amid the increasing interest in tumor EMT, only a few studies focused on the soluble mediators secreted by tumor cells passing through this phenotypic switch. In this review, we focus on the essential role of interleukin-8 (IL-8) signaling for the acquisition and maintenance of tumor EMT via direct and indirect mechanisms. Besides the autocrine loop between IL-8 and tumor cells that have gone through EMT, IL-8 could potentiate adjacent epithelial tumor cells into a mesenchymal phenotype via a paracrine mode. Moreover, understanding the role of IL-8 in EMT will provide insight into the pathogenesis of tumor progression and may facilitate the development of an effective strategy for the prevention and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Xinxin Long
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yingnan Ye
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lijie Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Pengpeng Liu
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenwen Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Feng Wei
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiubao Ren
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
35
|
Rangel-Barajas C, Coronel I, Florán B. Dopamine Receptors and Neurodegeneration. Aging Dis 2015; 6:349-68. [PMID: 26425390 DOI: 10.14336/ad.2015.0330] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/30/2015] [Indexed: 01/19/2023] Open
Abstract
Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson's disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- 1Department of Psychological and Brain Sciences Program in Neurosciences, Indiana University Bloomington, Bloomington, IN 47405, USA ; 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Israel Coronel
- 3Health Sciences Faculty, Anahuac University, Mexico Norte, State of Mexico, Mexico
| | - Benjamín Florán
- 4Department of Physiology, Biophysics and Neurosciences CINVESTAV-IPN, Mexico
| |
Collapse
|
36
|
Abstract
The ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention. The transcriptional regulator LIM-only 4 (LMO4) is highly expressed in pyramidal neurons of the BLA, where it plays an important role in fear learning. Because the BLA also contributes to cue-reward learning, we investigated the role of BLA LMO4 in this process using Lmo4-deficient mice and RNA interference. Lmo4-deficient mice showed a selective deficit in conditioned reinforcement. Knockdown of LMO4 in the BLA, but not in the nucleus accumbens, recapitulated this deficit in wild-type mice. Molecular and electrophysiological studies identified a deficit in dopamine D2 receptor signaling in the BLA of Lmo4-deficient mice. These results reveal a novel, LMO4-dependent transcriptional program within the BLA that is essential to cue-reward learning.
Collapse
|
37
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
38
|
Kassel S, Schwed JS, Stark H. Dopamine D3 receptor agonists as pharmacological tools. Eur Neuropsychopharmacol 2015; 25:1480-99. [PMID: 25498414 DOI: 10.1016/j.euroneuro.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/23/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Dysregulation of the dopaminergic innervation in the central nervous system plays a key role in different neurological disorders like Parkinson´s disease, restless legs syndrome, schizophrenia etc. Although dopamine D3 receptors have been recognized as an important target in these diseases, their full pharmacological properties need further investigations. With focus on dopamine D3 receptor full agonists, this review has divided the ergoline and non-ergoline ligands in dissimilar chemical subclasses describing their pharmacodynamic properties on different related receptors, on species differences and their functional properties on different signaling mechanism. This is combined with a short description of structure-activity relationships for each class. Therefore, this overview should support the rational choice for the optimal compound selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies.
Collapse
Affiliation(s)
- S Kassel
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - J S Schwed
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Stark
- Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
39
|
Ponce G, Quiñones-Lombraña A, Martín-Palanco NG, Rubio-Solsona E, Jiménez-Arriero MÁ, Palomo T, Hoenicka J. The Addiction-Related Gene Ankk1 is Oppositely Regulated by D1R- and D2R-Like Dopamine Receptors. Neurotox Res 2015; 29:345-50. [PMID: 26194616 DOI: 10.1007/s12640-015-9545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 11/24/2022]
Abstract
The ankyrin repeat and kinase domain containing 1 (ANKK1) TaqIA polymorphism has been extensively studied as a marker of the gene for dopamine receptor D2 (DRD2) in addictions and other dopamine-associated traits. In vitro mRNA and protein studies have shown a potential connection between ANKK1 and the dopaminergic system functioning. Here, we have investigated whether Ankk1 expression in the brain is regulated by treatment with dopaminergic agonists. We used quantitative RT-PCR of total brain and Western blots of specific brain areas to study Ankk1 in murine brain after dopaminergic treatments. We found that Ankk1 mRNA was upregulated after activation of D1R-like dopamine receptors with SKF38393 (2.660 ± 1.035-fold; t: 4.066, df: 11, P = 0.002) and apomorphine (2.043 ± 0.595-fold; t: 3.782, df: 8, P = 0.005). The D2R-like agonist quinelorane has no effect upon Ankk1 mRNA (1.004 ± 0.580-fold; t: 0.015, df: 10, P = 0.9885). In contrast, mice treatment with the D2R-like agonists 7-OH-DPAT and aripiprazole caused a significant Ankk1 mRNA downregulation (0.606 ± 0.057-fold; t: 2.786, df: 10, P = 0.02 and 0.588 ± 0.130-fold; t: 2.394, df: 11, P = 0.036, respectively). With respect the Ankk1 proteins profile, no effects were found after SKF38393 (t: 0.54, df: 2, P = 0.643) and Quinelorane (t: 0.286, df: 8, P = 0.782) treatments. In contrast, the D2R-like agonist 7-OH-DPAT (±) caused a significant increment of Ankk1 in the striatum (t: 2.718, df: 7; P = 0.03) when compared to the prefrontal cortex. The activation of D1R-like and D2-R-like leads to opposite transcriptional regulation of Ankk1 by specific pathways.
Collapse
Affiliation(s)
- Guillermo Ponce
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Madrid, Spain
| | - Adolfo Quiñones-Lombraña
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Noelia Guerra Martín-Palanco
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Estrella Rubio-Solsona
- Program of Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Miguel Ángel Jiménez-Arriero
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Tomás Palomo
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Janet Hoenicka
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario, Avda. Andalucía s/n, 28041, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Program of Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
40
|
Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms. THE PHARMACOGENOMICS JOURNAL 2015; 16:293-300. [PMID: 26122020 DOI: 10.1038/tpj.2015.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022]
Abstract
To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.
Collapse
|
41
|
Fu R, Yang P, Wu HL, Li ZW, Li ZY. GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling. Asian Pac J Cancer Prev 2015; 15:7245-9. [PMID: 25227822 DOI: 10.7314/apjcp.2014.15.17.7245] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glucose regulated protein 78 (GRP78) is usually recognized as a chaperone in the endoplasmic reticulum. However, increasing evidence indicates that GRP78 can be translocated to the cell surface, acting as a signaling receptor for a variety of ligands. Since little is known about the secretion of GRP78 and its role in the progression of colon cancer we here focused on GRP78 from colon cancer cells, and purified GRP78 protein mimicking the secreted GRP78 was able to utilize cell surface GRP78 as its receptor, activating downstream PI3K/Akt and Wnt/β-catenin signaling and promote colon cancer cell proliferation. Our study revealed a new mode of action of autocrine GRP78 in cancer progression: secreted GRP78 binds to cell surface GRP78 as its receptor and activates intracellular proliferation signaling.
Collapse
Affiliation(s)
- Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shaxi University, Taiyuan, China E-mail :
| | | | | | | | | |
Collapse
|
42
|
Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor. Proc Natl Acad Sci U S A 2015; 112:7097-102. [PMID: 25964346 DOI: 10.1073/pnas.1502742112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G-protein and β-arrestin pathways, and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased signal transduction for either the G-protein or β-arrestin interactions. These mutants were used to resolve the role of G proteins and β-arrestins in D2R signaling assays. The results show that D2R interactions with the two downstream effectors are dissociable and that G-protein signaling accounts for D2R canonical MAP kinase signaling cascade activation, whereas β-arrestin only activates elements of this cascade under certain conditions. Nevertheless, when expressed in mice in GABAergic medium spiny neurons of the striatum, the β-arrestin-biased D2R caused a significant potentiation of amphetamine-induced locomotion, whereas the G protein-biased D2R had minimal effects. The mutant receptors generated here provide a molecular tool set that should enable a better definition of the individual roles of G-protein and β-arrestin signaling pathways in D2R pharmacology, neurobiology, and associated pathologies.
Collapse
|
43
|
Kim JH. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells. Exp Ther Med 2014; 8:1891-1895. [PMID: 25371750 PMCID: PMC4218707 DOI: 10.3892/etm.2014.2033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/13/2014] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25-35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymerase chain reaction. Aβ25-35 was found to induce an apoptosis, dose-dependent effect on SH-SY5Y neuroblastoma cells, which peaked at a concentration of 20 μM after 24 h. A combination of Aβ25-35 and BDNF treatment increased the levels of Akt and decreased the level of glycogen synthase kinase-3β (GSK3β) in SH-SY5Y neuroblastoma cells. These findings indicated that BDNF administration exerted a neuroprotective effect against the toxicity of the Aβ25-35-induced apoptosis in these cells, which was accompanied by phosphoinositide 3-kinase/Akt activation and GSK3β phosphorylation. The mechanisms and signaling pathways underlying neuronal degeneration induced by the Aβ peptide remain to be further elucidated.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Neurosurgery, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
44
|
Hsieh YS, Chen PN, Yu CH, Kuo DY. Central dopamine action modulates neuropeptide-controlled appetite via the hypothalamic PI3K/NF-κB-dependent mechanism. GENES BRAIN AND BEHAVIOR 2014; 13:784-93. [DOI: 10.1111/gbb.12174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/20/2014] [Accepted: 08/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
| | - P.-N. Chen
- Institute of Biochemistry and Biotechnology
| | - C.-H. Yu
- Department of Physiology; Chung Shan Medical University and Chung Shan Medical University Hospital; Taichung City Taiwan
| | - D.-Y. Kuo
- Department of Physiology; Chung Shan Medical University and Chung Shan Medical University Hospital; Taichung City Taiwan
| |
Collapse
|
45
|
Dopamine D3 receptor is necessary for ethanol consumption: an approach with buspirone. Neuropsychopharmacology 2014; 39:2017-28. [PMID: 24584330 PMCID: PMC4059912 DOI: 10.1038/npp.2014.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Mesolimbic dopamine (DA) controls drug- and alcohol-seeking behavior, but the role of specific DA receptor subtypes is unclear. We tested the hypothesis that D3R gene deletion or the D3R pharmacological blockade inhibits ethanol preference in mice. D3R-deficient mice (D3R(-/-)) and their wild-type (WT) littermates, treated or not with the D3R antagonists SB277011A and U99194A, were tested in a long-term free choice ethanol-drinking (two-bottle choice) and in a binge-like ethanol-drinking paradigm (drinking in the dark, DID). The selectivity of the D3R antagonists was further assessed by molecular modeling. Ethanol intake was negligible in D3R(-/-) and robust in WT both in the two-bottle choice and DID paradigms. Treatment with D3R antagonists inhibited ethanol intake in WT but was ineffective in D3R(-/-) mice. Ethanol intake increased the expression of RACK1 and brain-derived neurotrophic factor (BDNF) in both WT and D3R(-/-); in WT there was also a robust overexpression of D3R. Thus, increased expression of D3R associated with activation of RACK1/BDNF seems to operate as a reinforcing mechanism in voluntary ethanol intake. Indeed, blockade of the BDNF pathway by the TrkB selective antagonist ANA-12 reversed chronic stable ethanol intake and strongly decreased the striatal expression of D3R. Finally, we evaluated buspirone, an approved drug for anxiety disorders endowed with D3R antagonist activity (confirmed by molecular modeling analysis), that resulted effective in inhibiting ethanol intake. Thus, DA signaling via D3R is essential for ethanol-related reward and consumption and may represent a novel therapeutic target for weaning.
Collapse
|
46
|
The GSK3 signaling pathway is activated by cocaine and is critical for cocaine conditioned reward in mice. PLoS One 2014; 9:e88026. [PMID: 24505362 PMCID: PMC3913742 DOI: 10.1371/journal.pone.0088026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/02/2014] [Indexed: 12/30/2022] Open
Abstract
The Akt - GSK3 signaling pathway has been recently implicated in psychostimulant-induced behavioral and cellular effects. Here, the ability of cocaine to regulate the activity of Akt and GSK3 was investigated by measuring the phosphorylation states of the two kinases. The anatomical specificity of the response was determined, as was the contributions of dopamine and NMDA receptors to the actions of cocaine. As GSK3 activity was found to be increased by cocaine, subsequent experiments investigated the importance of GSK3 activation in cocaine conditioned reward. Adult male CD-1 mice were injected with cocaine or saline, and levels of phosphorylated Akt and GSK3α/β were measured 30 minutes later. Acute administration of cocaine significantly decreased the phosphorylation of Akt-Thr308 (pAkt-Thr308) and GSK3β in the caudate putamen and nucleus accumbens core, without altering pAkt-Ser473 and pGSK3α. To investigate the role of dopamine and NMDA receptors in the regulation of Akt and GSK3 by cocaine, specific receptor antagonists were administered prior to cocaine. Blockade of dopamine D2 receptors with eticlopride prevented the reduction of pAkt-Thr308 produced by cocaine, whereas antagonists at dopamine D1, dopamine D2 or glutamatergic NMDA receptors each blocked cocaine-induced reductions in pGSK3β. The potential importance of GSK3 activity in the rewarding actions of cocaine was determined using a cocaine conditioned place preference procedure. Administration of the selective GSK3 inhibitor, SB 216763, prior to cocaine conditioning sessions blocked the development of cocaine place preference. In contrast, SB 216763 did not alter the acquisition of a contextual fear conditioning response, demonstrating that SB 216763 did not globally inhibit contextual learning processes. The results of this study indicate that phosphorylation of GSK3β is reduced, hence GSK3β activity is increased following acute cocaine, an effect that is contingent upon both dopaminergic and glutamatergic receptors. Further, GSK3 activity is required for the development of cocaine conditioned reward.
Collapse
|
47
|
Chun LS, Free RB, Doyle TB, Huang XP, Rankin ML, Sibley DR. D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. Mol Pharmacol 2013; 84:190-200. [PMID: 23680635 DOI: 10.1124/mol.113.085175] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The D(1) dopamine receptor (D(1)R) has been proposed to form a hetero-oligomer with the D(2) dopamine receptor (D(2)R), which in turn results in a complex that couples to phospholipase C-mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D(1) and D(2) subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D(1)-D(2) heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein-coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of G(qα) with the D(1) and D(2) dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing G(qα) with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D(1)R and D(2)R cotransfected cells. Moreover, sequestration of G(βγ) subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D(1)R/D(2)R-mediated calcium signaling involves more than receptor-mediated G(q) protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D(1)-D(2) heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo.
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-9405, USA
| | | | | | | | | | | |
Collapse
|
48
|
Collo G, Bono F, Cavalleri L, Plebani L, Mitola S, Merlo Pich E, Millan MJ, Zoli M, Maskos U, Spano P, Missale C. Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. Mol Pharmacol 2013; 83:1176-89. [DOI: 10.1124/mol.113.084863] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Salles MJ, Hervé D, Rivet JM, Longueville S, Millan MJ, Girault JA, Cour CML. Transient and rapid activation of Akt/GSK-3β and mTORC1 signaling by D3 dopamine receptor stimulation in dorsal striatum and nucleus accumbens. J Neurochem 2013; 125:532-44. [DOI: 10.1111/jnc.12206] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Marie-Josèphe Salles
- Institut National de la Santé et de la Recherche Médicale (Inserm); Paris France
- Université Pierre et Marie Curie-Paris 6; Paris France
- Institut du Fer à Moulin; Paris France
- Psychopharmacology Department; Institut de Recherches Servier; Croissy sur Seine France
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale (Inserm); Paris France
- Université Pierre et Marie Curie-Paris 6; Paris France
- Institut du Fer à Moulin; Paris France
| | - Jean-Michel Rivet
- Psychopharmacology Department; Institut de Recherches Servier; Croissy sur Seine France
| | - Sophie Longueville
- Institut National de la Santé et de la Recherche Médicale (Inserm); Paris France
- Université Pierre et Marie Curie-Paris 6; Paris France
- Institut du Fer à Moulin; Paris France
| | - Mark J. Millan
- Psychopharmacology Department; Institut de Recherches Servier; Croissy sur Seine France
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale (Inserm); Paris France
- Université Pierre et Marie Curie-Paris 6; Paris France
- Institut du Fer à Moulin; Paris France
| | | |
Collapse
|
50
|
Gross G, Drescher K. The role of dopamine D(3) receptors in antipsychotic activity and cognitive functions. Handb Exp Pharmacol 2013:167-210. [PMID: 23027416 DOI: 10.1007/978-3-642-25758-2_7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dopamine D(3) receptors have a pre- and postsynaptic localization in brain stem nuclei, limbic parts of the striatum, and cortex. Their widespread influence on dopamine release, on dopaminergic function, and on several other neurotransmitters makes them attractive targets for therapeutic intervention. The signaling pathways of D(3) receptors are distinct from those of other members of the D(2)-like receptor family. There is increasing evidence that D(3) receptors can form heteromers with dopamine D(1), D(2), and probably other G-protein-coupled receptors. The functional consequences remain to be characterized in more detail but might open new interesting pharmacological insight and opportunities. In terms of behavioral function, D(3) receptors are involved in cognitive, social, and motor functions, as well as in filtering and sensitization processes. Although the role of D(3) receptor blockade for alleviating positive symptoms is still unsettled, selective D(3) receptor antagonism has therapeutic features for schizophrenia and beyond as demonstrated by several animal models: improved cognitive function, emotional processing, executive function, flexibility, and social behavior. D(3) receptor antagonism seems to contribute to atypicality of clinically used antipsychotics by reducing extrapyramidal motor symptoms; has no direct influence on prolactin release; and does not cause anhedonia, weight gain, or metabolic dysfunctions. Unfortunately, clinical data with new, selective D(3) antagonists are still incomplete; their cognitive effects have only been communicated in part. In vitro, virtually all clinically used antipsychotics are not D(2)-selective but also have affinity for D(3) receptors. The exact D(3) receptor occupancies achieved in patients, particularly in cortical areas, are largely unknown, mainly because only nonselective or agonist PET tracers are currently available. It is unlikely that a degree of D(3) receptor antagonism optimal for antipsychotic and cognitive function can be achieved with existing antipsychotics. Therefore, selective D(3) antagonism represents a promising mechanism still to be fully exploited for the treatment of schizophrenia, cognitive deficits in schizophrenia, and comorbid conditions such as substance abuse.
Collapse
Affiliation(s)
- Gerhard Gross
- Abbott, Neuroscience Research, Ludwigshafen, Germany.
| | | |
Collapse
|