1
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
2
|
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse ( Mus musculus musculus) in relation to chemical signalling. PeerJ 2017; 5:e3541. [PMID: 28698824 PMCID: PMC5502090 DOI: 10.7717/peerj.3541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs) are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs) have the capacity to selectively transport volatile organic compounds (VOCs) in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8%) and female-biased (7%) proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides), and SCGB/ABP (i.e., secretoglobin) families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.
Collapse
Affiliation(s)
- Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Klempt
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kuntova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication. Genetics 2017; 205:1517-1527. [PMID: 28159752 DOI: 10.1534/genetics.116.194571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP.
Collapse
|
4
|
Hu J, Sheng L, Li L, Zhou X, Xie F, D'Agostino J, Li Y, Ding X. Essential role of the cytochrome P450 enzyme CYP2A5 in olfactory mucosal toxicity of naphthalene. Drug Metab Dispos 2013; 42:23-7. [PMID: 24104196 DOI: 10.1124/dmd.113.054429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Naphthalene (NA), a ubiquitous environmental pollutant that can cause pulmonary and nasal toxicity in laboratory animals, requires cytochrome P450 (P450)-mediated metabolic activation to cause toxicity. Our recent study using a Cyp2f2-null mouse showed that CYP2F2 plays an essential role in NA-induced lung toxicity, but not in NA-induced nasal toxicity. The aim of this study was to determine whether mouse CYP2A5, abundantly expressed in nasal olfactory mucosa (OM) and the liver, but less in the lung, plays a major role in the bioactivation and toxicity of NA in the OM. We found, by comparing Cyp2a5-null and wild-type (WT) mice, that the loss of CYP2A5 expression led to substantial decreases in rates of NA metabolic activation by OM microsomes. The loss of CYP2A5 did not cause changes in systemic clearance of NA (at 200 mg/kg, i.p.). However, the Cyp2a5-null mice were much more resistant than were WT mice to NA-induced nasal toxicity (although not lung toxicity), when examined at 24 hours after NA dosing (at 200 mg/kg, i.p.), or to NA-induced depletion of total nonprotein sulfhydryl in the OM (although not in the lung), examined at 2 hours after dosing. Thus, mouse CYP2A5 plays an essential role in the bioactivation and toxicity of NA in the OM, but not in the lung. Our findings further illustrate the tissue-specific nature of the role of individual P450 enzymes in xenobiotic toxicity, and provide the basis for a more reliable assessment of the potential risks of NA nasal toxicity in humans.
Collapse
Affiliation(s)
- Jinping Hu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.H., L.S., L.L., X.Z., F.X., J.D., X.D.); and Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing, China (J.H., L.S., Y.L.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Reid N, Mazer-Amirshahi M, Clancy C, James L, van den Anker J. Elevated acetaminophen concentration measured after nasal insufflation of Percocet®. J Emerg Med 2013; 45:683-5. [PMID: 23880443 DOI: 10.1016/j.jemermed.2013.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/09/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prescription opioid products are often formulated with acetaminophen, but the pharmacokinetics of nasally administered acetaminophen are poorly characterized. We report a case of a potentially toxic acetaminophen concentration after nasal insufflation of oxycodone/acetaminophen tablets. CASE REPORT A 38-year-old female presented to the emergency department after 2 days of nasally insufflating a total of 50 oxycodone/acetaminophen 5/325 mg tablets. On day 3, she was evaluated for nausea and pharyngitis. She denied oral ingestion of the drug. The initial acetaminophen concentration was 14 μg/mL, although the patient had not insufflated any medication in approximately 24 h. Initial AST and ALT were normal. The patient was treated with a 21-h course of intravenous N-acetylcysteine. On hospital day 2, the measured acetaminophen concentration was < 10 μg/mL and the patient's liver enzymes remained within normal limits. CONCLUSIONS The pharmacokinetics of nasally administered acetaminophen have not been well studied, yet there is potential for significant exposure with prescription opioid abuse. Clinicians should be vigilant in evaluating patients for toxicity due to adjunct medications formulated in narcotic pain preparations used by routes other than ingestion.
Collapse
Affiliation(s)
- Nicole Reid
- National Capital Poison Center, Washington, DC
| | | | | | | | | |
Collapse
|
6
|
Wei Y, Li L, Zhou X, Zhang QY, Dunbar A, Liu F, Kluetzman K, Yang W, Ding X. Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos 2012; 41:132-40. [PMID: 23073733 DOI: 10.1124/dmd.112.048736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Knockout mouse models targeting various cytochrome P450 (P450 or CYP) genes are valuable for determining P450's biologic functions, including roles in drug metabolism and chemical toxicity. In this study, a novel Cyp2a(4/5)bgs-null mouse model was generated, in which a 1.2-megabase pair genomic fragment containing nine Cyp genes in mouse chromosome 7 (including, sequentially, Cyp2a5, 2g1, 2b19, 2b23, 2a4, 2b9, 2b13, 2b10, and 2s1) are deleted, through Cre-mediated recombination in vivo. The resultant mouse strain was viable and fertile, without any developmental deficits or morphologic abnormalities. Deletion of the constitutive genes in the cluster was confirmed by polymerase chain reaction analysis of the genes and the mRNAs in tissues known to express each gene. The loss of this gene cluster led to significant decreases in microsomal activities toward testosterone hydroxylation in various tissues examined, including olfactory mucosa (OM), lung, liver, and brain. In addition, systemic clearance of pentobarbital was decreased in Cyp2a(4/5)bgs-null mice, as indicated by >60% increases in pentobarbital-induced sleeping time, compared with wild-type (WT) mice. This novel Cyp2a(4/5)bgs-null mouse model will be valuable for in vivo studies of drug metabolism and chemical toxicities in various tissues, including the liver, lung, brain, intestine, kidney, skin, and OM, where one or more of the targeted Cyp genes are known to be expressed in WT mice. The model will also be valuable for preparation of humanized mice that express human CYP2A6, CYP2A13, CYP2B6, or CYP2S1, and as a knockout mouse model for five non-P450 genes (Vmn1r184, Nalp9c, Nalp4a, Nalp9a, and Vmn1r185) that were also deleted.
Collapse
Affiliation(s)
- Yuan Wei
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhou X, D'Agostino J, Xie F, Ding X. Role of CYP2A5 in the bioactivation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mice. J Pharmacol Exp Ther 2012; 341:233-41. [PMID: 22262919 DOI: 10.1124/jpet.111.190173] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen. Previously, we have demonstrated that NNK-induced lung tumorigenesis in mice depends on target-tissue bioactivation by pulmonary cytochrome P450 (P450) enzymes. The present study was designed to test the hypothesis that mouse CYP2A5 plays an essential role in NNK bioactivation in mouse lung. The role of CYP2A5 in NNK bioactivation was studied both in vitro and in vivo, by comparing the kinetic parameters of microsomal NNK metabolism and tissue levels of O(6)-methylguanine (O(6)-mG) (the DNA adduct highly correlated with lung tumorigenesis) between wild-type (WT) and Cyp2a5-null mice. In both liver and lung microsomes, the loss of CYP2A5 resulted in significant increases in the apparent K(m) values for the formation of 4-oxo-4-(3-pyridyl)butanone, which represents the reactive intermediate that produces O(6)-mG in vivo. The loss of CYP2A5 did not change circulating levels of NNK or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in mice treated intraperitoneally with NNK at either 20 or 100 mg/kg. However, the levels of lung O(6)-mG were significantly lower in Cyp2a5-null than in WT mice; the extent of the reduction was greater at the 20 mg/kg dose (∼40%) than at the 100 mg/kg dose (∼20%). These results indicate that CYP2A5 is the low-K(m) enzyme for NNK bioactivation in mouse lung. It is noteworthy that the remaining NNK bioactivation activities in the Cyp2a5-null mice could be inhibited by 8-methoxypsoralen, a P450 inhibitor used previously to demonstrate the role of CYP2A5 in NNK-induced lung tumorigenesis. Thus, P450 enzymes other than CYP2A5 probably also contribute to NNK-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York, USA
| | | | | | | |
Collapse
|
8
|
Zhou X, D'Agostino J, Li L, Moore CD, Yost GS, Ding X. Respective roles of CYP2A5 and CYP2F2 in the bioactivation of 3-methylindole in mouse olfactory mucosa and lung: studies using Cyp2a5-null and Cyp2f2-null mouse models. Drug Metab Dispos 2012; 40:642-7. [PMID: 22228748 DOI: 10.1124/dmd.111.044081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether mouse CYP2A5 and CYP2F2 play critical roles in the bioactivation of 3-methylindole (3MI), a tissue-selective toxicant, in the target tissues, the nasal olfactory mucosa (OM) and lung. Five metabolites of 3MI were identified in NADPH- and GSH-fortified microsomal reactions, including 3-glutathionyl-S-methylindole (GS-A1), 3-methyl-2-glutathionyl-S-indole (GS-A2), 3-hydroxy-3-methyleneindolenine (HMI), indole-3-carbinol (I-3-C), and 3-methyloxindole (MOI). The metabolite profiles and enzyme kinetics of the reactions were compared between OM and lung, and among wild-type, Cyp2a5-null, and Cyp2f2-null mice. In lung reactions, GS-A1, GS-A2, and HMI were detected as major products, and I-3-C and MOI, as minor metabolites. In OM reactions, all five metabolites were detected in ample amounts. The loss of CYP2F2 affected formation of all 3MI metabolites in the lung and formation of HMI, GS-A1, and GS-A2 in the OM. In contrast, loss of CYP2A5 did not affect formation of 3MI metabolites in the lung but caused substantial decreases in I-3-C and MOI formation in the OM. Thus, whereas CYP2F2 plays a critical role in the 3MI metabolism in the lung, both CYP2A5 and CYP2F2 play important roles in 3MI metabolism in the OM. Furthermore, the fate of the reactive metabolites produced by the two enzymes through common dehydrogenation and epoxidation pathways seemed to differ with CYP2A5 supporting direct conversion to stable metabolites and CYP2F2 supporting further formation of reactive iminium ions. These results provide the basis for understanding the respective roles of CYP2A5 and CYP2F2 in 3MI's toxicity in the respiratory tract.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
9
|
Li L, Wei Y, Van Winkle L, Zhang QY, Zhou X, Hu J, Xie F, Kluetzman K, Ding X. Generation and characterization of a Cyp2f2-null mouse and studies on the role of CYP2F2 in naphthalene-induced toxicity in the lung and nasal olfactory mucosa. J Pharmacol Exp Ther 2011; 339:62-71. [PMID: 21730012 DOI: 10.1124/jpet.111.184671] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CYP2F enzymes, abundantly expressed in the respiratory tract, are active toward many xenobiotic compounds, including naphthalene (NA). However, the precise roles of these enzymes in tissue-selective chemical toxicity have been difficult to resolve. A Cyp2f2-null mouse was generated in this study by disrupting the Cyp2f2 fourth exon. Homozygous Cyp2f2-null mice, which had no CYP2F2 expression and showed no changes in the expression of other P450 genes examined, were viable and fertile and had no in utero lethality or developmental deficits. The loss of CYP2F2 expression led to substantial decreases in the in vitro catalytic efficiency of microsomal NA epoxygenases in lung (up to ~160-fold), liver (~3-fold), and nasal olfactory mucosa (OM; up to ~16-fold), and significant decreases in rates of systemic NA (300 mg/kg i.p.) clearance. The Cyp2f2-null mice were largely resistant to NA-induced cytotoxicity, when examined at 24 h after NA dosing (at 300 mg/kg i.p.), and to NA-induced depletion of total nonprotein sulfhydryl (NPSH), examined at 2 h after dosing, in the lungs. In contrast, the loss of CYP2F2 expression did not alleviate NA-induced NPSH depletion or tissue toxicity in the OM. Mouse CYP2F2 clearly plays an essential role in the bioactivation and toxicity of NA in the lung but not in the OM. The Cyp2f2-null mouse should be valuable for studies on the role of CYP2F2 in the metabolism and toxicity of numerous other xenobiotic compounds and for future production of a CYP2F1-humanized mouse.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|