1
|
Wang W, Chen L, Xu F, Chen R, Li Q, Zou L, Hu H, Zhu W. miR-4486 inhibits colorectal cancer proliferation via targeting MAP2K4 to inhibit the activation of the p38MAPK/JNK signaling. Heliyon 2024; 10:e38926. [PMID: 39512455 PMCID: PMC11539255 DOI: 10.1016/j.heliyon.2024.e38926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Since MAP2K4 was reportedly involved in colorectal cancer development and the p38MAPK/JNK signaling transcription, this study aimed to investigate the mechanism by which the microRNA (miR)-4486 acts on colorectal cell proliferation. Methods RT-PCR was conducted to measure the expression levels of the MAP2K4 and miR-4486 in NCM460, SW1116, and HCT116 cells. TargetScanHuman site anticipated that MAP2K4 may be a target of miR-4486. The dual-luciferase reporter assay confirmed their relationship. After plasmids of miR-4486 mimic and si-MAP2K4 transfection, MAP2K4 was quantified again, The CCK-8 assay was carried out to assess cell proliferation, while Scratch and Transwell assays were used to evaluate cell migration and invasion. Finally, miR-4486 mimic and SB203580 were applied in HCT116 and SW1116 cells separately or in combination. CCK-8, Scratch and Transwell assay were performed again. In addition, the proteins including c-capase3, Bax, Bcl2, MAP2K4, and the p38MAPK/JNK signaling-related proteins expression levels were quantified by Western blot (WB). Results Compared with the NCM460 cells, the expression level of MAP2K4 was elevated, while the expression level of miR-4486 was reduced in SW1116 and HCT116 cells. The results showed that elevated levels of miR-4486 suppressed cell proliferation, migration, and invasion in colorectal cells by downregulating MAP2K4 expression. miR-4486 mimic showed similar effects to SB203580, which promoted colorectal cell apoptosis and inhibited the p38 MAPK/JNK signaling transcription. Conclusion miR-4486 may target MAP2K4 to inhibit colorectal cell proliferation by inhibiting the activation of the p38/JNK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Linxia Chen
- Department of Operating Room, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Feipeng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Rihong Chen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Qidong Li
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Lirui Zou
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Honghui Hu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Wenjing Zhu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| |
Collapse
|
2
|
Al-Hadyan KS, Storr SJ, Zaitoun AM, Lobo DN, Martin SG. Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom. Diseases 2024; 12:227. [PMID: 39452470 PMCID: PMC11507029 DOI: 10.3390/diseases12100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Poor survival outcomes in periampullary cancer highlight the need for improvement in biomarkers and the development of novel therapies. Redox proteins, including the thioredoxin system, play vital roles in cellular antioxidant systems. Methods: In this retrospective study, thioredoxin (Trx), thioredoxin-interacting protein (TxNIP), and thioredoxin reductase (TrxR) protein expression was assessed in 85 patients with pancreatic ductal adenocarcinoma (PDAC) and 145 patients with distal bile duct or ampullary carcinoma using conventional immunohistochemistry. Results: In patients with PDAC, high cytoplasmic TrxR expression was significantly associated with lymph node metastasis (p = 0.033). High cytoplasmic and nuclear Trx expression was significantly associated with better overall survival (p = 0.018 and p = 0.006, respectively), and nuclear Trx expression remained significant in multivariate Cox regression analysis (p < 0.0001). In distal bile duct and ampullary carcinomas, high nuclear TrxR expression was associated with vascular (p = 0.001) and perineural (p = 0.021) invasion, and low cytoplasmic TxNIP expression was associated with perineural invasion (p = 0.025). High cytoplasmic TxNIP expression was significantly associated with better overall survival (p = 0.0002), which remained significant in multivariate Cox regression analysis (p = 0.013). Conclusions: These findings demonstrate the prognostic importance of Trx system protein expression in periampullary cancers.
Collapse
Affiliation(s)
- Khaled S. Al-Hadyan
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (K.S.A.-H.); (S.J.S.)
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sarah J. Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (K.S.A.-H.); (S.J.S.)
| | - Abed M. Zaitoun
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham NG7 2UH, UK;
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2RD, UK
| | - Dileep N. Lobo
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK;
| | - Stewart G. Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (K.S.A.-H.); (S.J.S.)
| |
Collapse
|
3
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Budak B, Kalın ŞN, Yapça ÖE. Antiproliferative, antimigratory, and apoptotic effects of diffractaic and vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1525-1535. [PMID: 37658214 DOI: 10.1007/s00210-023-02698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 μg/ml and 66.53 μg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.
Collapse
Affiliation(s)
- Büşra Budak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ömer Erkan Yapça
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
5
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
6
|
Hasan AA, Kalinina E, Tatarskiy V, Shtil A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022; 10:biomedicines10071757. [PMID: 35885063 PMCID: PMC9313168 DOI: 10.3390/biomedicines10071757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress involves the increased production and accumulation of free radicals, peroxides, and other metabolites that are collectively termed reactive oxygen species (ROS), which are produced as by-products of aerobic respiration. ROS play a significant role in cell homeostasis through redox signaling and are capable of eliciting damage to macromolecules. Multiple antioxidant defense systems have evolved to prevent dangerous ROS accumulation in the body, with the glutathione and thioredoxin/thioredoxin reductase (Trx/TrxR) systems being the most important. The Trx/TrxR system has been used as a target to treat cancer through the thiol–disulfide exchange reaction mechanism that results in the reduction of a wide range of target proteins and the generation of oxidized Trx. The TrxR maintains reduced Trx levels using NADPH as a co-substrate; therefore, the system efficiently maintains cell homeostasis. Being a master regulator of oxidation–reduction processes, the Trx-dependent system is associated with cell proliferation and survival. Herein, we review the structure and catalytic properties of the Trx/TrxR system, its role in cellular signaling in connection with other redox systems, and the factors that modulate the Trx system.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-434-62-05
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
| | - Alexander Shtil
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| |
Collapse
|
7
|
Yao A, Storr SJ, Inman M, Barwell L, Moody CJ, Martin SG. Cytotoxic and Radiosensitising Effects of a Novel Thioredoxin Reductase Inhibitor in Brain Cancers. Mol Neurobiol 2022; 59:3546-3563. [PMID: 35344158 PMCID: PMC9148287 DOI: 10.1007/s12035-022-02808-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 11/04/2022]
Abstract
The thioredoxin (Trx) system, a key antioxidant pathway, represents an attractive target for cancer therapy. This study investigated the chemotherapeutic and radiosensitising effects of a novel Trx reductase (TrxR) inhibitor, IQ10, on brain cancer cells and the underlying mechanisms of action. Five brain cancer cell lines and a normal cell type were used. TrxR activity and expression were assessed by insulin reduction assay and Western blotting, respectively. IQ10 cytotoxicity was evaluated using growth curve, resazurin reduction and clonogenic assays. Radiosensitivity was examined using clonogenic assay. Reactive oxygen species levels were examined by flow cytometry and DNA damage assessed by immunofluorescence. Epithelial-mesenchymal transition (EMT)-related gene expression was examined by RT-PCR array. IQ10 significantly inhibited TrxR activity but did not affect Trx system protein expression in brain cancer cells. The drug exhibited potent anti-proliferative and cytotoxic effects against brain cancer cells under both normoxic and hypoxic conditions in both 2D and 3D systems, with IC50s in the low micromolar range. It was up to ~ 1000-fold more potent than temozolomide. IQ10 substantially sensitised various brain cancer cells to radiation, with such effect being due, in part, to functional inhibition of TrxR, making cells less able to deal with oxidative stress and leading to increased oxidative DNA damage. IQ10 significantly downregulated EMT-associated gene expression suggesting potential anti-invasive and antimetastatic properties. This study suggests that IQ10 is a potent anticancer agent and could be used as either a single agent or combined with radiation, to treat brain cancers.
Collapse
Affiliation(s)
- Anqi Yao
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Martyn Inman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lucy Barwell
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Kim TW, Ko SG. The Herbal Formula JI017 Induces ER Stress via Nox4 in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10121881. [PMID: 34942984 PMCID: PMC8698338 DOI: 10.3390/antiox10121881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy is a powerful anti-tumor therapeutic strategy; however, resistance to treatment remains a serious concern. To overcome chemoresistance, combination therapy with anticancer drugs is a potential strategy. We developed a novel herbal extract, JI017, with lower toxicity and lesser side effects. JI017 induced programmed cell death and excessive unfolded protein response through the release of intracellular reactive oxygen species (ROS) and calcium in breast cancer cells. JI017 treatment increased the expression of endoplasmic reticulum (ER) stress markers, including p-PERK, p-eIF2α, ATF4, and CHOP, via the activation of both exosomal GRP78 and cell lysate GRP78. The ROS inhibitors diphenyleneiodonium and N-acetyl cysteine suppressed apoptosis and excessive ER stress by inhibiting Nox4 in JI017-treated breast cancer cells. Furthermore, in paclitaxel-resistant breast cancer cell lines, MCF-7R and MDA-MB-231R, a combination of JI017 and paclitaxel overcame paclitaxel resistance by blocking epithelial-mesenchymal transition (EMT) processes, such as the downregulation of E-cadherin expression and the upregulation of HIF-1α, vimentin, Snail, and Slug expression. These findings suggested that JI017 exerts a powerful anti-cancer effect in breast cancer and a combination therapy of JI017 and paclitaxel may be a potential cancer therapy for paclitaxel resistant breast cancer.
Collapse
Affiliation(s)
| | - Seong-Gyu Ko
- Correspondence: ; Tel.: +82-2-961-0329; Fax: +82-2-961-1165
| |
Collapse
|
9
|
Abdullah NA, Inman M, Moody CJ, Storr SJ, Martin SG. Cytotoxic and radiosensitising effects of a novel thioredoxin reductase inhibitor in breast cancer. Invest New Drugs 2021; 39:1232-1241. [PMID: 33768386 PMCID: PMC8426295 DOI: 10.1007/s10637-021-01106-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Radiotherapy is an effective treatment modality for breast cancer but, unfortunately, not all patients respond fully with a significant number experiencing local recurrences. Overexpression of thioredoxin and thioredoxin reductase has been reported to cause multidrug and radiation resistance - their inhibition may therefore improve therapeutic efficacy. Novel indolequinone compounds have been shown, in pancreatic cancer models, to inhibit thioredoxin reductase activity and exhibit potent anticancer activity. The present study evaluates, using in vitro breast cancer models, the efficacy of a novel indolequinone compound (IQ9) as a single agent and in combination with ionising radiation using a variety of endpoint assays including cell proliferation, clonogenic survival, enzyme activity, and western blotting. Three triple-negative breast cancer (MDA-MB-231, MDA-MB-468, and MDA-MB-436) and two luminal (MCF-7 and T47D) breast cancer cell lines were used. Results show that treatment with IQ9 significantly inhibited thioredoxin reductase activity, and inhibited cell growth and colony formation of breast cancer cells with IC50 values in the low micromolar ranges. Enhanced radiosensitivity of triple-negative breast cancer cells was observed, with sensitiser enhancement ratios of 1.20–1.43, but with no evident radiosensitisation of luminal breast cancer cell lines. IQ9 upregulated protein expression of thioredoxin reductase in luminal but not in triple-negative breast cancer cells which may explain the observed differential radiosensitisation. This study provides important evidence of the roles of the thioredoxin system as an exploitable radiobiological target in breast cancer cells and highlights the potential therapeutic value of indolequinones as radiosensitisers. ***This study was not part of a clinical trial. Clinical trial registration number: N/A
Collapse
Affiliation(s)
- Nurul A Abdullah
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Present address: Biomedical Science Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Martyn Inman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
10
|
Zhang W, Zhu Y, Yu H, Liu X, Jiao B, Lu X. Libertellenone H, a Natural Pimarane Diterpenoid, Inhibits Thioredoxin System and Induces ROS-Mediated Apoptosis in Human Pancreatic Cancer Cells. Molecules 2021; 26:molecules26020315. [PMID: 33435380 PMCID: PMC7827531 DOI: 10.3390/molecules26020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a marine derived inhibitor of Trx system and an anticancer candidate.
Collapse
Affiliation(s)
- Weirui Zhang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Yuping Zhu
- College of Basic Medical Sciences, Experimental Teacher Center, Naval Medical University, Shanghai 200433, China;
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
- Correspondence: (B.J.); (X.L.); Tel.: +86-21-81870970 (ext. 8001) (B.J.); +86-21-81870970 (ext. 8004) (X.L.)
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
- Correspondence: (B.J.); (X.L.); Tel.: +86-21-81870970 (ext. 8001) (B.J.); +86-21-81870970 (ext. 8004) (X.L.)
| |
Collapse
|
11
|
Shu N, Cheng Q, Arnér ESJ, Davies MJ. Inhibition and crosslinking of the selenoprotein thioredoxin reductase-1 by p-benzoquinone. Redox Biol 2019; 28:101335. [PMID: 31590044 PMCID: PMC6812298 DOI: 10.1016/j.redox.2019.101335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/03/2022] Open
Abstract
Quinones are common in nature, and often cytotoxic. Their proposed toxicity mechanisms involve redox cycling with radical generation, and/or reactions with nucleophiles, such as protein cysteine (Cys) residues, forming adducts via Michael addition reactions. The selenenyl anion of selenocysteine (Sec) is a stronger nucleophile, more prevalent at physiological pH, and more reactive than the corresponding thiolate anion of Cys. We therefore hypothesized that Sec residues should be readily modified by quinones and with potential consequences for the structure and function of selenoproteins. Here, we report data on the interaction of p-benzoquinone (BQ) with the selenoprotein thioredoxin reductase-1 (TrxR1), which exposes an accessible Sec residue upon physiological reduction by NADPH. Our results reveal that BQ targets NADPH-reduced TrxR1 and inhibits its activity using 5,5′-dithiobis(2-nitrobenzoic acid) or juglone as model substrates, consistent with the targeting of both the Cys and Sec residues of TrxR1. In the absence of NADPH, BQ modified the non-catalytic Cys residues, leading to subunit crosslinking, mainly through disulfides, which also resulted in some loss of activity. This crosslinking was time-dependent and independent of the Sec residue. Addition of NADPH after BQ pre-treatment could resolve the disulfide-linked crosslinking. TrxR activity loss was also observed upon incubation of J774A.1 cells or cell lysates with BQ. These data suggest that BQ readily targets TrxR1, albeit in a rather complex manner, which results in structural changes and loss of enzyme activity. We suggest that TrxR1 targeting can explain some of the cytotoxicity of BQ, and potentially also that of other quinone compounds.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Korman DB, Ostrovskaya LA, Kuz’min VA. Induction of Oxidative Stress in Tumor Cells: A New Strategy for Drug Therapy of Malignant Tumors. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919030102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Rozanov D, Cheltsov A, Nilsen A, Boniface C, Forquer I, Korkola J, Gray J, Tyner J, Tognon CE, Mills GB, Spellman P. Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity. PLoS One 2019; 14:e0205623. [PMID: 30908483 PMCID: PMC6433232 DOI: 10.1371/journal.pone.0205623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
To determine the target of the recently identified lead compound NSC130362 that is responsible for its selective anti-cancer efficacy and safety in normal cells, structure-activity relationship (SAR) studies were conducted. First, NSC13062 was validated as a starting compound for the described SAR studies in a variety of cell-based viability assays. Then, a small library of 1,4-naphthoquinines (1,4-NQs) and quinoline-5,8-diones was tested in cell viability assays using pancreatic cancer MIA PaCa-2 cells and normal human hepatocytes. The obtained data allowed us to select a set of both non-toxic compounds that preferentially induced apoptosis in cancer cells and toxic compounds that induced apoptosis in both cancer and normal cells. Anti-cancer activity of the selected non-toxic compounds was confirmed in viability assays using breast cancer HCC1187 cells. Consequently, the two sets of compounds were tested in multiple cell-based and in vitro activity assays to identify key factors responsible for the observed activity. Inhibition of the mitochondrial electron transfer chain (ETC) is a key distinguishing activity between the non-toxic and toxic compounds. Finally, we developed a mathematical model that was able to distinguish these two sets of compounds. The development of this model supports our conclusion that appropriate quantitative SAR (QSAR) models have the potential to be employed to develop anti-cancer compounds with improved potency while maintaining non-toxicity to normal cells.
Collapse
Affiliation(s)
- Dmitri Rozanov
- Department of Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Anton Cheltsov
- Q-MOL LLC, San Diego, California, United States of America
| | - Aaron Nilsen
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Christopher Boniface
- Department of Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Isaac Forquer
- Chemistry Department, Portland State University, Portland, Oregon, United States of America
| | - James Korkola
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joe Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jeffrey Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cristina E. Tognon
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, United States of America
- Howard Hughes Medical Institute, Portland, Oregon, United States of America
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Paul Spellman
- Department of Molecular and Medical Genetics, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
14
|
Wang X, Gao M, Zhang J, Ma Y, Qu W, Liang J, Wu H, Wen H. Peperomin E and its orally bioavailable analog induce oxidative stress-mediated apoptosis of acute myeloid leukemia progenitor cells by targeting thioredoxin reductase. Redox Biol 2019; 24:101153. [PMID: 30909158 PMCID: PMC6434189 DOI: 10.1016/j.redox.2019.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
The early immature CD34+ acute myeloid leukemia (AML) cell subpopulation-acute myeloid leukemia progenitor cells (APCs), is often resistant to conventional chemotherapy, making them largely responsible for the relapse of AML. However, to date, the eradication of APCs remains a major challenge. We previously reported a naturally occurring secolignan- Peperomin E (PepE) and its analog 6-methyl (hydroxyethyl) amino-2, 6-dihydropeperomin E (DMAPE) that selectively target and induce oxidative stress-mediated apoptosis in KG-1a CD34+ cells (an APCs-like cell line) in vitro. We therefore further evaluated the efficacy and the mechanism of action of these compounds in this study. We found that PepE and DMAPE have similar potential to eliminate primary APCs, with no substantial toxicities to the normal cells in vitro and in vivo. Mechanistically, these agents selectively inhibit TrxR1, an antioxidant enzyme aberrantly expressed in APCs, by covalently binding to its selenocysteine residue at the C-terminal redox center. TrxR1 inhibition mediated by PepE (DMAPE) leads to the formation of cellular selenium compromised thioredoxin reductase-derived apoptotic protein (SecTRAP), oxidation of Trx, induction of oxidative stress and finally activation of apoptosis of APCs. Our results demonstrate a potential anti-APCs molecular target – TrxR1 and provide valuable insights into the mechanism underlying PepE (DMAPE)-induced cytotoxicity of APCs, and support the further preclinical investigations on PepE (DMAPE)-related therapies for the treatment of relapsed AML.
Collapse
Affiliation(s)
- Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| | - Ming Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Jiyun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Ying Ma
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Xiaolinwei Lane No. 200, Nanjing 210094, People's Republic of China
| | - Wenshu Qu
- People's Liberation Army Cancer Center, Nanjing Bayi Hospital, Yanggongjing Street No. 34, Nanjing 210002, People's Republic of China
| | - Jingyu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Tongjia Lane No.24, Nanjing 210009, People's Republic of China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| |
Collapse
|
15
|
Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, Wu C, Zhou H, Cai Y, Liang G, Wang Y. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol 2018; 21:101061. [PMID: 30590310 PMCID: PMC6306695 DOI: 10.1016/j.redox.2018.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is presently emerging as a potential direction. We previously developed a curcumin analog B63 as an anti-cancer agent in pre-clinical evaluation. In the present study, we evaluated the effect and mechanism of B63 on gastric cancer cells. Our studies show that B63 targets TrxR1 protein and increases cellular reactive oxygen species (ROS) level, which results in halting gastric cancer cells and inducing caspase-independent paraptotic modes of death. The paraptosis induced by B63 was mediated by ROS-mediated ER stress and MAPK activation. Either overexpression of TrxR1 or suppression of ROS normalized B63-induced paraptosis in gastric cancer cells. Furthermore, B63 caused paraptosis in 5-fluorouracil-resistant gastric cancer cells, and B63 treatment reduced the growth of gastric cancer xenografts, which was associated with increased ROS and paraptosis. Collectively, our findings provide a novel strategy for the treatment of gastric cancer by utilizing TrxR1-mediated oxidative stress generation and subsequent cell paraptosis.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaoming Chen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Li Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| |
Collapse
|
16
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
17
|
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018; 61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Ma
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100038, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
18
|
Kaminska KK, Bertrand HC, Tajima H, Stafford WC, Cheng Q, Chen W, Wells G, Arner ESJ, Chew EH. Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads. Oncotarget 2018; 7:40233-40251. [PMID: 27244886 PMCID: PMC5130005 DOI: 10.18632/oncotarget.9579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy.
Collapse
Affiliation(s)
- Kamila K Kaminska
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic of Singapore
| | - Helene C Bertrand
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.,Current address: École Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7203 LBM, 75005 Paris, France
| | - Hisashi Tajima
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Wan Chen
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic of Singapore
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Elias S J Arner
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Eng-Hui Chew
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic of Singapore
| |
Collapse
|
19
|
Chen G, Chen Q, Zeng F, Zeng L, Yang H, Xiong Y, Zhou C, Liu L, Jiang W, Yang N, Zhang Y. The serum activity of thioredoxin reductases 1 (TrxR1) is correlated with the poor prognosis in EGFR wild-type and ALK negative non-small cell lung cancer. Oncotarget 2017; 8:115270-115279. [PMID: 29383158 PMCID: PMC5777770 DOI: 10.18632/oncotarget.23252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Background The thioredxin reductases 1 (TrxR1) is one of the major antioxidant and redox regulators in mammalian cells. Studies have shown that TrxR1 is over expressed in many malignancy diseases. However, few studies have evaluated the role of TrxR1 in non-small cell lung cancer (NSCLC). Methods Serum levels of TrxR1 and CEA in 142 patients with EGFR wild type and ALK negative advanced NSCLC was measured by ELISA assay before first line standard doublet chemotherapy from June 2013 to February 2016 in Hunan Cancer Hospital. Clinical characteristics and Survival data were collected and analyzed according to serum TrxR1 levels. Results No significant differences were founded from clinic pathological variables. With the cut-off value of 12U/mL, the lower serum TrxR1 activity patients had long progression-free survival (PFS) and overall survival (OS) compared with higher patients (PFS: 5.3m vs. 3.6m p=0.044, OS: 14.5m vs. 11m p<0.001). In subgroup, lower serum TrxR1 activity patients had long OS both in adenocarcinoma (ADC) (17m vs. 8m, p=0.003) and squamous cell carcinoma (SCC) (13m vs. 11m, p=0.035). While combining with TrxR1 activity and serum CEA concentrations, we founded that patients with lower serum TrxR1 activity and serum CEA concentrations had long OS compared with higher group patients (20m vs. 7m, p<0.001). Conclusions Serum TrxR1 activity was not affected by clinic pathological variables. Measurement of serum TrxR1 activity might be an independent prognostic factor for EGFR wild type and ALK negative advanced NSCLC patients. Combination of serum TrxR1 activity and serum CEA concentrations need to be further profiled from bench to beside.
Collapse
Affiliation(s)
- Gong Chen
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Qiong Chen
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Fanxu Zeng
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Liang Zeng
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Haiyan Yang
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Yi Xiong
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Chunhua Zhou
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Li Liu
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Wenjuan Jiang
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Nong Yang
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Yongchang Zhang
- Departement of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| |
Collapse
|
20
|
Chen W, Zou P, Zhao Z, Weng Q, Chen X, Ying S, Ye Q, Wang Z, Ji J, Liang G. Selective killing of gastric cancer cells by a small molecule via targeting TrxR1 and ROS-mediated ER stress activation. Oncotarget 2017; 7:16593-609. [PMID: 26919094 PMCID: PMC4941337 DOI: 10.18632/oncotarget.7565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
The thioredoxin reductase (TrxR) 1 is often overexpressed in numerous cancer cells. Targeting TrxR1 leads to a reduction in tumor progression and metastasis, making the enzyme an attractive target for cancer treatment. Our previous research revealed that the curcumin derivative B19 could induce cancer cell apoptosis via activation of endoplasmic reticulum (ER) stress. However, the upstream mechanism and molecular target of B19 is still unclear. In this study, we demonstrate that B19 directly inhibits TrxR1 enzyme activity to elevate oxidative stress and then induce ROS-mediated ER Stress and mitochondrial dysfunction, subsequently resulting in cell cycle arrest and apoptosis in human gastric cancer cells. A computer-assistant docking showed that B19 may bind TrxR1 protein via formation of a covalent bond with the residue Cys-498. Blockage of ROS production totally reversed B19-induced anti-cancer actions. In addition, the results of xenograft experiments in mice were highly consistent with in vitro studies. Taken together, targeting TrxR1 with B19 provides deep insight into the understanding of how B19 exerts its anticancer effects. More importantly, this work indicates that targeting TrxR1 and manipulating ROS levels are effective therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Weiqian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhongwei Zhao
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Qiaoyou Weng
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shilong Ying
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingqing Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhe Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiansong Ji
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
21
|
Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk. Sci Rep 2017; 7:6465. [PMID: 28743999 PMCID: PMC5526989 DOI: 10.1038/s41598-017-06979-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
Thioredoxin reductase (TrxR) as a selenium (Se)-containing antioxidase plays key role in regulating intracellular redox status. Selenocystine (SeC) a natural available Se-containing amino acid showed novel anticancer potential through triggering oxidative damage-mediated apoptosis. However, whether TrxR-mediated oxidative damage was involved in SeC-induced apoptosis in human glioma cells has not been elucidated yet. Herein, SeC-induced human glioma cell apoptosis was detected in vitro, accompanied by PARP cleavage, caspases activation and DNA fragmentation. Mechanically, SeC caused mitochondrial dysfunction and imbalance of Bcl-2 family expression. SeC treatment also triggered ROS-mediated DNA damage and disturbed the MAPKs and AKT pathways. However, inhibition of ROS overproduction effectively attenuated SeC-induced oxidative damage and apoptosis, and normalized the expression of MAPKs and AKT pathways, indicating the significance of ROS in SeC-induced apoptosis. Importantly, U251 human glioma xenograft growth in nude mice was significantly inhibited in vivo. Further investigation revealed that SeC-induced oxidative damage was achieved by TrxR1-targeted inhibition in vitro and in vivo. Our findings validated the potential of SeC to inhibit human glioma growth by oxidative damage-mediated apoptosis through triggering TrxR1-targeted inhibition.
Collapse
|
22
|
Topkas E, Cai N, Cumming A, Hazar-Rethinam M, Gannon OM, Burgess M, Saunders NA, Endo-Munoz L. Auranofin is a potent suppressor of osteosarcoma metastasis. Oncotarget 2016; 7:831-44. [PMID: 26573231 PMCID: PMC4808036 DOI: 10.18632/oncotarget.5704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) accounts for 56% of malignant bone cancers in children and adolescents. Patients with localized disease rarely develop metastasis; however, pulmonary metastasis occurs in approximately 50% of patients and leads to a 5-year survival rate of only 10–20%. Therefore, identifying the genes and pathways involved in metastasis, as new therapeutic targets, is crucial to improve long-term survival of OS patients. Novel markers that define metastatic OS were identified using comparative transcriptomic analyses of two highly metastatic (C1 and C6) and two poorly metastatic clonal variants (C4 and C5) isolated from the metastatic OS cell line, KHOS. Using this approach, we determined that the metastatic phenotype correlated with overexpression of thioredoxin reductase 2 (TXNRD2) or vascular endothelial growth factor (VEGF). Validation in patient biopsies confirmed TXNRD2 and VEGF targets were highly expressed in 29–42% of metastatic OS patient biopsies, with no detectable expression in non-malignant bone or samples from OS patients with localised disease. Auranofin (AF) was used to selectively target and inhibit thioredoxin reductase (TrxR). At low doses, AF was able to inhibit TrxR activity without a significant effect on cell viability whereas at higher doses, AF could induce ROS-dependent apoptosis. AF treatment, in vivo, significantly reduced the development of pulmonary metastasis and we provide evidence that this effect may be due to an AF-dependent increase in cellular ROS. Thus, TXNRD2 may represent a novel druggable target that could be deployed to reduce the development of fatal pulmonary metastases in patients with OS.
Collapse
Affiliation(s)
- Eleni Topkas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Na Cai
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mehlika Hazar-Rethinam
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Orla Margaret Gannon
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melinda Burgess
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Nicholas Andrew Saunders
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, Zhu Y, Han J, Xin Z, Wu G, Zhao J, Li X, Yan X. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 2016; 6:35196. [PMID: 27731378 PMCID: PMC5059685 DOI: 10.1038/srep35196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediated by thapsigargin promoted CHOP and DR5 synthesis thus sensitizing TRAIL treatment, which induced ESCC cells apoptosis. These effects were reversed by DR5 siRNA in vitro and CHOP siRNA both in vitro and in vivo. Besides, chemically inhibition of AMPK by Compound C and AMPK siRNA weakened the anti-cancer effect of thapsigargin and TRAIL co-treatment. Therefore, our findings suggest ER stress effectively sensitizes human ESCC to TRAIL-mediated apoptosis via the TRAIL-DR5-AMPK signaling pathway, and that activation of ER stress may be beneficial for improving the efficacy of TRAIL-based anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jing Zhao
- Department of Thoracic Surgery, Beijing Military General Hospital, 5 DongSi ShiTiao Road 100070, Beijing 100700, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
24
|
Sobhani M, Taheri AR, Jafarian AH, Hashemy SI. The activity and tissue distribution of thioredoxin reductase in basal cell carcinoma. J Cancer Res Clin Oncol 2016; 142:2303-7. [PMID: 27601162 DOI: 10.1007/s00432-016-2242-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Basal cell carcinoma (BCC) is the most prevalent cancer worldwide. Different mechanisms are proposed to be involved in its pathogenesis such as oxidative stress. Oxidative stress, which is the consequence of the disruption of redox balance in favor of oxidants, is involved in the initiation or progression of many tumors. Thioredoxin reductase (TrxR) is a key enzyme of the thioredoxin (Trx) system, containing Trx and TrxR and NADPH, which is one of the main cellular oxidoreductases with an essential role in cellular health and survival through providing and maintaining redox balance. Therefore, we aimed to study and compare the activity and tissue distribution of TrxR in tumoral tissue and its healthy margin in patients with BCC. METHODS After biopsy and taking samples from 18 patients, TrxR activity was measured using a commercial kit and its tissue distribution was assessed immunohistochemically. RESULTS Both the activity and tissue distribution of TrxR in tumoral tissues were significantly higher compared to their healthy margins. Regarding the tissue distribution, this significant increase in TrxR in tumoral tissues was documented based on both staining intensity and abundance of positive cells in immunohistochemistry. CONCLUSIONS Based on these results, it is concluded that TrxR is involved in the pathogenesis of BCC; however, more investigations are required to clarify whether this increase is a consequence of BCC or it is an initiating mechanism.
Collapse
Affiliation(s)
- Maryam Sobhani
- Department of Emergency Medicine, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad-Reza Taheri
- Department of Dermatology, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Hossein Jafarian
- Department of Pathology, Qaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, Burillo E, Fortuño A, Martinez-Pinna R, Llamas-Granda P, Beloqui O, Egido J, Zalba G, Martin-Ventura JL. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med 2015; 86:352-61. [PMID: 26117319 DOI: 10.1016/j.freeradbiomed.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Elena Burillo
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Ana Fortuño
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain
| | - Roxana Martinez-Pinna
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Oscar Beloqui
- Department of Internal Medicine, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesus Egido
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - José Luis Martin-Ventura
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Hayes AJ, Skouras C, Haugk B, Charnley RM. Keap1-Nrf2 signalling in pancreatic cancer. Int J Biochem Cell Biol 2015; 65:288-99. [PMID: 26117456 DOI: 10.1016/j.biocel.2015.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2, also called Nfe2l2), a master regulator of redox homeostasis, and its dominant negative regulator, Kelch-like ECH-associated protein 1 (Keap1), together tightly control the expression of numerous detoxifying and antioxidant genes. Nrf2 and the 'antioxidant response element' (ARE)-driven genes it controls are frequently upregulated in pancreatic cancer and correlate with poor survival. Upregulation of Nrf2 is, at least in part, K-Ras oncogene-driven and contributes to pancreatic cancer proliferation and chemoresistance. In this review, we aim to provide an overview of Keap1-Nrf2 signalling as it relates to pancreatic cancer, discussing the effects of inhibiting Nrf2 or Nrf2/ARE effector proteins to increase chemosensitivity.
Collapse
Affiliation(s)
- Alastair J Hayes
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Centre, Room C2.18, 47 Little France Crescent, Edinburgh, Scotland EH16 4TJ, United Kingdom.
| | - Christos Skouras
- School of Clinical Surgery, College of Medicine and Veterinary Medicine, University of Edinburgh, Room SU 305, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland EH16 4SB, United Kingdom.
| | - Beate Haugk
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, England NE1 4LP, United Kingdom.
| | - Richard M Charnley
- Department of Hepato-Pancreatico-Biliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, England NE7 7DN, United Kingdom.
| |
Collapse
|
27
|
Inman M, Visconti A, Yan C, Siegel D, Ross D, Moody CJ. Antitumour indolequinones: synthesis and activity against human pancreatic cancer cells. Org Biomol Chem 2015; 12:4848-61. [PMID: 24848343 DOI: 10.1039/c4ob00711e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An important determinant of the growth inhibitory activity of indolequinones against pancreatic cancer cells is substitution on the 2-position with 2-unsubstituted derivatives being markedly more potent. A series of indolequinones bearing a range of substituents on nitrogen and at the indolylcarbinyl position was prepared by copper(II)-mediated reaction of bromoquinones and enamines, followed by functional group interconversions. The compounds were then assayed for their ability to inhibit the growth of pancreatic cancer cells. The pKa of the leaving group at the 3-position was shown to influence growth inhibitory activity that is consistent with the proposed mechanism of action of reduction, loss of leaving group and formation of a reactive iminium species. Substitutions on the indole nitrogen were well tolerated with little influence on growth inhibitory activity while substitutions at the 5- and 6-positions larger than methoxy led to decreased activity. The studies presented define the range of substitutions of 2-unsubstituted indolequinones required for optimal growth inhibitory activity.
Collapse
Affiliation(s)
- Martyn Inman
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Ternes APL, Zemolin AP, da Cruz LC, da Silva GF, Saidelles APF, de Paula MT, Wagner C, Golombieski RM, Flores ÉMDM, Picoloto RS, Pereira AB, Franco JL, Posser T. Drosophila melanogaster - an embryonic model for studying behavioral and biochemical effects of manganese exposure. EXCLI JOURNAL 2014; 13:1239-53. [PMID: 26417337 PMCID: PMC4464430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Embryonic animals are especially susceptible to metal exposure. Manganese (Mn) is an essential element, but in excess it can induce toxicity. In this study we used Drosophila melanogaster as an embryonic model to investigate biochemical and behavioral alterations due to Mn exposure. Flies were treated with standard medium supplemented with MnCl2 at 0.1 mM, 0.5 mM or 1 mM from the egg to the adult stage. At 0.5 mM and 1 mM Mn, newly ecloded flies showed significantly enhanced locomotor activity when assessed by negative geotaxis behavior. In addition, a significant increase in Mn levels (p < 0.0001) was observed, while Ca, Fe, Cu, Zn and S levels were significantly decreased. A significant drop in cell viability occurred in flies exposed to 1 mM Mn. There was also an induction of reactive oxygen species at 0.5 mM and 1 mM Mn (p < 0.05). At 1 mM, Mn increased Catalase (p < 0.005), Superoxide Dismutase (p < 0.005) and Hsp83 (p < 0.0001) mRNA expression, without altering Catalase or Superoxide Dismutase activity; the activity of Thioredoxin reductase and Glutatione-S-transferase enzymes was increased. Mn treatment did not alter ERK or JNK1/2 phosphorylation, but at 1 mM caused an inhibition of p38(MAPK) phosphorylation. Together these data suggest mechanisms of adaptation in the fly response to Mn exposure in embryonic life.
Collapse
Affiliation(s)
- Ana Paula Lausmann Ternes
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil
| | - Ana Paula Zemolin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil
| | - Litiele Cezar da Cruz
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil
| | - Gustavo Felipe da Silva
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil
| | - Ana Paula Fleig Saidelles
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil
| | - Mariane Trindade de Paula
- Programa de Pós Graduação em Bioquímica, Universidade Federal do Pampa, Campus Uruguaiana, CEP 97500-970
| | - Caroline Wagner
- Universidade Federal do Pampa, Campus Caçapava do Sul, RS, CEP 96570-000 Brasil
| | - Ronaldo Medeiros Golombieski
- Laboratório de Biologia Molecular de Drosophila e Sequenciamento (LabDros), Universidade Federal de Santa Maria, Santa Maria, RS, 97300 000
| | - Érico Marlon de Moraes Flores
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil
| | - Rochele Sogari Picoloto
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brasil
| | - Antônio Batista Pereira
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil
| | - Jeferson Luis Franco
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil
| | - Thaís Posser
- Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Universidade Federal do Pampa, Campus São Gabriel, RS, 97300 000, Brasil,*To whom correspondence should be addressed: Thaís Posser, Universidade Federal do Pampa Campus São Gabriel, Centro Interdisciplinar de Pesquisa em Biotecnologia (CIP/BIOTEC), Av. Antônio Trilha, 1847 Brasil. CEP: 97300-000; Tel: +555532326075, E-mail:
| |
Collapse
|
29
|
Duan D, Zhang B, Yao J, Liu Y, Fang J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic Biol Med 2014; 70:182-93. [PMID: 24583460 DOI: 10.1016/j.freeradbiomed.2014.02.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 11/24/2022]
Abstract
Shikonin, a major active component of the Chinese herbal plant Lithospermum erythrorhizon, has been applied for centuries in traditional Chinese medicine. Although shikonin demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of shikonin have not been fully defined. We report here that shikonin may interact with the cytosolic thioredoxin reductase (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme with a C-terminal -Gly-Cys-Sec-Gly active site, to induce reactive oxygen species (ROS)-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Shikonin primarily targets the Sec residue in TrxR1 to inhibit its physiological function, but further shifts the enzyme to an NADPH oxidase to generate superoxide anions, which leads to accumulation of ROS and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 attenuates the cytotoxicity of shikonin, whereas knockdown of TrxR1 sensitizes cells to shikonin treatment. Targeting TrxR1 with shikonin thus discloses a previously unrecognized mechanism underlying the biological activity of shikonin and provides an in-depth insight into the action of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
30
|
Carvalho C, Siegel D, Inman M, Xiong R, Ross D, Moody CJ. Benzofuranquinones as inhibitors of indoleamine 2,3-dioxygenase (IDO). Synthesis and biological evaluation. Org Biomol Chem 2014; 12:2663-74. [DOI: 10.1039/c3ob42258e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med 2013; 65:632-644. [PMID: 23920313 DOI: 10.1016/j.freeradbiomed.2013.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a phase II enzyme that participates in the detoxification of dopamine-derived quinone molecules and reactive oxygen species. Our prior work using a proteomic approach found that NQO1 protein levels were significantly decreased in stable hepatitis B virus (HBV)-producing hepatoma cells relative to the empty-vector-transfected controls. However, the mechanism and biological significance of the NQO1 suppression remain elusive. In this study we demonstrate that HBV X protein (HBx) induces epigenetic silencing of NQO1 in hepatoma cells through promoter hypermethylation via recruitment of DNA methyltransferase DNMT3A to the promoter region of the NQO1 gene. In HBV-related hepatocellular carcinoma (HCC) specimens, HBx expression was correlated negatively to NQO1 transcripts but positively to NQO1 promoter hypermethylation. Downregulation of NQO1 by HBx reduced intracellular glutathione levels, impaired mitochondrial function, and increased susceptibility of hepatoma cells to oxidative stress-induced cell injury. These results suggest a novel mechanism for HBV-mediated pathogenesis of chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Dong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Xian-E Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yan-Ling Chen
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
32
|
Gan FF, Kaminska KK, Yang H, Liew CY, Leow PC, So CL, Tu LNL, Roy A, Yap CW, Kang TS, Chui WK, Chew EH. Identification of Michael acceptor-centric pharmacophores with substituents that yield strong thioredoxin reductase inhibitory character correlated to antiproliferative activity. Antioxid Redox Signal 2013; 19:1149-65. [PMID: 23311917 PMCID: PMC3786391 DOI: 10.1089/ars.2012.4909] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS The role of thioredoxin reductase (TrxR) in tumorigenesis has made it an attractive anticancer target. A systematic approach for development of novel compounds as TrxR inhibitors is currently lacking. Structurally diversified TrxR inhibitors share in common electrophilic propensities for the sulfhydryl groups, among which include the Michael reaction acceptors containing an α,β-unsaturated carbonyl moiety. We aimed to identify features among structurally diversified Michael acceptor-based compounds that would yield a strong TrxR inhibitory character. RESULTS Structurally dissimilar Michael acceptor-based natural compounds such as isobutylamides, zerumbone, and shogaols (SGs) were found to possess a poor TrxR inhibitory activity, indicating that a sole Michael acceptor moiety was insufficient to produce TrxR inhibition. The 1,7-diphenyl-hept-3-en-5-one pharmacophore in 3-phenyl-3-SG, a novel SG analog that possessed comparable TrxR inhibitory and antiproliferative potencies as 6-SG, was modified to yield 1,5-diphenyl-pent-1-en-3-one (DPPen) and 1,3-diphenyl-pro-1-en-3-one (DPPro, also known as chalcone) pharmacophores. These Michael acceptor-centric pharmacophores, when substituted with the hydroxyl and fluorine groups, gave rise to analogs displaying a TrxR inhibitory character positively correlated to their antiproliferative potencies. Lead analogs 2,2'-diOH-5,5'-diF-DPPen and 2-OH-5-F-DPPro yielded a half-maximal TrxR inhibitory concentration of 9.1 and 10.5 μM, respectively, after 1-h incubation with recombinant rat TrxR, with the C-terminal selenocysteine residue found to be targeted. INNOVATION Identification of Michael acceptor-centric pharmacophores among diversified compounds demonstrates that a systematic approach to discover and develop Michael acceptor-based TrxR inhibitors is feasible. CONCLUSION A strong TrxR inhibitory character correlated to the antiproliferative potency is attributed to structural features that include an α,β-unsaturated carbonyl moiety centered in a DPPen or DPPro pharmacophore bearing hydroxyl and fluorine substitutions.
Collapse
Affiliation(s)
- Fei-Fei Gan
- Department of Pharmacy, National University of Singapore , Singapore, Republic of Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu J, Mu C, Yue W, Li J, Ma B, Zhao L, Liu L, Chen Q, Yan C, Liu H, Hao X, Zhu Y. A diterpenoid derivate compound targets selenocysteine of thioredoxin reductases and induces Bax/Bak-independent apoptosis. Free Radic Biol Med 2013; 63:485-94. [PMID: 23732520 DOI: 10.1016/j.freeradbiomed.2013.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023]
Abstract
We have previously shown that the natural diterpenoid derivative S3 induced Bim upregulation and apoptosis in a Bax/Bak-independent manner. However, the exact molecular target(s) of S3 and the mechanism controlling Bim upregulation are still not clear. Here, we identify that S3 targets the selenoproteins TrxR1 and TrxR2 at the selenocysteine residue of the reactive center of the enzymes and inhibits their antioxidant activities. Consequently, cellular ROS is elevated, leading to the activation of FOXO3a, which contributes to Bim upregulation in Bax/Bak-deficient cells. Moreover, S3 retards tumor growth in subcutaneous xenograft tumors by inhibiting TrxR activity in vivo. Our studies delineate the signaling pathway controlling Bim upregulation, which results in Bax/Bak-independent apoptosis and provide evidence that the compounds can act as anticancer agents based on mammalian TrxRs inhibition.
Collapse
Affiliation(s)
- Jinhua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Inman M, Moody CJ. Copper(II)-Mediated Synthesis of Indolequinones from Bromoquinones and Enamines. European J Org Chem 2013; 2013:2179-2187. [PMID: 23704833 PMCID: PMC3659408 DOI: 10.1002/ejoc.201201597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Indexed: 11/06/2022]
Abstract
The reaction of enamines and bromoquinones in the presence of copper(II) acetate and potassium carbonate results in a regiospecific synthesis of indolequinones. The reaction is broad in scope and scalable and provides a route to the core structure that is present in several biologically interesting natural and synthetic compounds.
Collapse
Affiliation(s)
- Martyn Inman
- School of Chemistry, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK Fax: +44-115-951-3564, E-mail: Homepage: http://www.nottingham.ac.uk/∼pczcm3/
| | - Christopher J Moody
- School of Chemistry, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK Fax: +44-115-951-3564, E-mail: Homepage: http://www.nottingham.ac.uk/∼pczcm3/
| |
Collapse
|