1
|
Cavalluzzi MM, Viale M, Rotondo NP, Ferraro V, Lentini G. Drug Repositioning for Ovarian Cancer Treatment: An Update. Anticancer Agents Med Chem 2024; 24:637-647. [PMID: 38367265 DOI: 10.2174/0118715206282904240122063914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer (OC) is one of the most prevalent malignancies in female reproductive organs, and its 5-year survival is below 45%. Despite the advances in surgical and chemotherapeutic options, OC treatment is still a challenge, and new anticancer agents are urgently needed. Drug repositioning has gained significant attention in drug discovery, representing a smart way to identify new clinical applications for drugs whose human safety and pharmacokinetics have already been established, with great time and cost savings in pharmaceutical development endeavors. This review offers an update on the most promising drugs repurposable for OC treatment and/or prevention.
Collapse
Affiliation(s)
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Valeria Ferraro
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Farinato A, Cavalluzzi MM, Altamura C, Campanale C, Laghetti P, Saltarella I, Delre P, Barbault A, Tarantino N, Milani G, Rotondo NP, Di Cesare Mannelli L, Ghelardini C, Pierno S, Mangiatordi GF, Lentini G, Desaphy JF. Development of Riluzole Analogs with Improved Use-Dependent Inhibition of Skeletal Muscle Sodium Channels. ACS Med Chem Lett 2023; 14:999-1008. [PMID: 37465302 PMCID: PMC10350938 DOI: 10.1021/acsmedchemlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Concetta Altamura
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Carmen Campanale
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Paola Laghetti
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Pietro Delre
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Arthur Barbault
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Nancy Tarantino
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Gualtiero Milani
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Natalie Paola Rotondo
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Lorenzo Di Cesare Mannelli
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Carla Ghelardini
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Sabata Pierno
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | | | - Giovanni Lentini
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Jean-François Desaphy
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
Lubeluzole Repositioning as Chemosensitizing Agent on Multidrug-Resistant Human Ovarian A2780/DX3 Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227870. [PMID: 36431971 PMCID: PMC9695310 DOI: 10.3390/molecules27227870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
In a previous paper, we demonstrated the synergistic action of the anti-ischemic lubeluzole (Lube S) on the cytotoxic activity of doxorubicin (Dox) and paclitaxel in human ovarian cancer A2780 and lung cancer A549 cells. In the present paper, we extended in vitro the study to the multi-drug-resistant A2780/DX3 cell line to verify the hypothesis that the Dox and Lube S drug association may potentiate the antitumor activity of this anticancer compound also in the context of drug resistance. We also evaluated some possible mechanisms underlying this activity. We analyzed the antiproliferative activity in different cancer cell lines. Furthermore, apoptosis, Dox accumulation, MDR1 downregulation, ROS, and NO production in A2780/DX3 cells were also evaluated. Our results confirm that Lube S improves Dox antiproliferative and apoptotic activities through different mechanisms of action, all of which may contribute to the final antitumor effect. Moderate stereoselectivity was found, with Lube S significantly more effective than its enantiomer (Lube R) and the corresponding racemate (Lube S/R). Docking simulation studies on the ABCB1 Cryo-EM structure supported the hypothesis that Lube S forms a stable MDR1-Dox-Lube S complex, which hampers the protein transmembrane domain flipping and blocks the efflux of Dox from resistant A2780/DX3 cells. In conclusion, our in vitro studies reinforce our previous hypothesis for repositioning the anti-ischemic Lube S as a potentiating agent in anticancer chemotherapy.
Collapse
|
4
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization, antimicrobial evaluation studies and cytotoxic activity of some transition metal complexes with tridentate (N,N,O) donor azo dye ligand. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
5
|
Lubeluzole: from anti-ischemic drug to preclinical antidiarrheal studies. Pharmacol Rep 2020; 73:172-184. [PMID: 33074530 DOI: 10.1007/s43440-020-00167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lubeluzole, a neuroprotective anti-ischemic drug, was tested for its ability to act as both antibiotic chemosensitizing and antipropulsive agent for the treatment of infectious diarrhea. METHODS In the present report, the effect of lubeluzole against antidiarrheal target was tested. The antimicrobial activity towards Gram-positive and Gram-negative bacteria was investigated together with its ability to affect ileum and colon contractility. RESULTS Concerning the antimicrobial activity, lubeluzole showed synergistic effects when used in combination with minocycline against four common Gram-positive and Gram-negative bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922), although relatively high doses of lubeluzole were required. In ex vivo experiments on sections of gut smooth muscles, lubeluzole reduced the intestinal contractility in a dose-dependent manner, with greater effects observed on colon than on ileum, and being more potent than reference compounds otilonium bromide and loperamide. CONCLUSION All above results identify lubeluzole as a possible starting compound for the development of a novel class of antibacterial adjuvants endowed with spasmolytic activity.
Collapse
|
6
|
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019; 25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | | | - Giovanni Lentini
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
7
|
Farinato A, Altamura C, Desaphy JF. Effects of Benzothiazolamines on Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:233-250. [PMID: 28939972 DOI: 10.1007/164_2017_46] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Altamura
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Policlinico, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
8
|
Use-dependent inhibition of glycine-activated chloride current in rat neurons by β-amyloid peptide pretreated with hexafluoroisopropanol. Neuroreport 2017; 28:579-583. [PMID: 28489663 DOI: 10.1097/wnr.0000000000000801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hexafluoroisopropanol (HFIP) is a nonpolar organic solvent that is often used to prepare β-amyloid peptide (Aβ) samples. In this work, we compare the effects of two different species derived from synthetic Aβ1-42 and prepared without HFIP (Aβ) or using HFIP (Aβ/HFIP) on the glycine-activated chloride current (IGly). The experiments were conducted on the pyramidal neurons isolated from CA3 region of rat hippocampus. Transmembrane currents were recorded using a conventional patch-clamp technique in the whole-cell configuration. The IGly was induced by a step application of the agonist for 600 ms through glass capillary. Aβ or Aβ/HFIP was coapplied with glycine. The effects of the two species of the peptide have similar and distinctive features. Both substances caused a reduction in the peak amplitude and an acceleration of desensitization of the IGly. At the same time, the effect of Aβ/HFIP was found to develop and recover more slowly and required several repeated applications for its saturation (use dependence). The effect of Aβ/HFIP was voltage independent and equally pronounced at negative and positive membrane potentials. First, our results confirm that HFIP pretreatment may influence the properties of Aβ. Second, new information on the glycine receptor ability to interact with drugs in use-dependent mode was obtained.
Collapse
|
9
|
Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity. Neuropharmacology 2016; 113:206-216. [PMID: 27743929 PMCID: PMC5154332 DOI: 10.1016/j.neuropharm.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023]
Abstract
Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies. To040 and To042 are potent use-dependent hNav1.4 sodium channel blockers. The compounds strengthen the molecular interaction at the local anesthetic receptor. To042 is 120-fold more potent than mexiletine in vitro in myotonia-like conditions. To042 is 100-fold more potent than mexiletine in vivo in a rat model of myotonia. To042 is a promising antimyotonic drug deserving further investigation.
Collapse
|
10
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
11
|
The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca(2+)/calmodulin-dependent kinase II. Eur J Med Chem 2016; 116:36-45. [PMID: 27043269 DOI: 10.1016/j.ejmech.2016.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/20/2022]
Abstract
An affinity capillary electrophoresis (ACE) method to estimate apparent dissociation constants between bovine brain calmodulin (CaM) and non-peptidic ligands was developed. The method was validated reproducing the dissociation constants of a number of well-known CaM ligands. In particular, the potent antagonist 125-C9 was ad hoc synthesized through an improved synthetic procedure. The ACE method was successfully applied to verify CaM affinity for lubeluzole, a well-known neuroprotective agent recently proved useful to potentiate the activity of anti-cancer drugs. Lubeluzole was slightly less potent than 125-C9 (Kd = 2.9 ± 0.7 and 0.47 ± 0.06 μM, respectively) and displayed Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibition (IC50 = 40 ± 1 μM). Possible binding modes of lubeluzole to CaM were explored by docking studies based on the X-ray crystal structures of several trifluoperazine-CaM complexes. An estimated dissociation constant in good agreement with the experimental one was found and the main aminoacidic residues and interactions contributing to complex formation were highlighted. The possibility that interference with Ca(2+) pathways may contribute to the previously observed chemosensitizing effects of lubeluzole on human ovarian adenocarcinoma and lung carcinoma cells are discussed.
Collapse
|
12
|
Fe2+ and Fe3+ in micromolar concentrations modulate glycine-induced Cl− current in rat hippocampal neurons. Brain Res Bull 2015; 115:9-16. [DOI: 10.1016/j.brainresbull.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
|
13
|
Desaphy JF, Carbonara R, Costanza T, Conte Camerino D. Preclinical evaluation of marketed sodium channel blockers in a rat model of myotonia discloses promising antimyotonic drugs. Exp Neurol 2014; 255:96-102. [PMID: 24613829 PMCID: PMC4004800 DOI: 10.1016/j.expneurol.2014.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 12/25/2022]
Abstract
Although the sodium channel blocker mexiletine is considered the first-line drug in myotonia, some patients experiment adverse effects, while others do not gain any benefit. Other antimyotonic drugs are thus needed to offer mexiletine alternatives. In the present study, we used a previously-validated rat model of myotonia congenita to compare six marketed sodium channel blockers to mexiletine. Myotonia was induced in the rat by injection of anthracen-9-carboxylic acid, a muscle chloride channel blocker. The drugs were given orally and myotonia was evaluated by measuring the time of righting reflex. The drugs were also tested on sodium currents recorded in a cell line transfected with the human skeletal muscle sodium channel hNav1.4 using patch-clamp technique. In vivo, carbamazepine and propafenone showed antimyotonic activity at doses similar to mexiletine (ED50 close to 5mg/kg); flecainide and orphenadrine showed greater potency (ED50 near 1mg/kg); lubeluzole and riluzole were the more potent (ED50 near 0.1mg/kg). The antimyotonic activity of drugs in vivo was linearly correlated with their potency in blocking hNav1.4 channels in vitro. Deviation was observed for propafenone and carbamazepine, likely due to pharmacokinetics and multiple targets. The comparison of the antimyotonic dose calculated in rats with the current clinical dose in humans strongly suggests that all the tested drugs may be used safely for the treatment of human myotonia. Considering the limits of mexiletine tolerability and the occurrence of non-responders, this study proposes an arsenal of alternative drugs, which may prove useful to increase the quality of life of individuals suffering from non-dystrophic myotonia. Further clinical trials are warranted to confirm these results.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari I-70125, Italy.
| | - Roberta Carbonara
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari I-70125, Italy
| | - Teresa Costanza
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari I-70125, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari-Aldo Moro, Bari I-70125, Italy
| |
Collapse
|
14
|
Cavalluzzi MM, Viale M, Bruno C, Carocci A, Catalano A, Carrieri A, Franchini C, Lentini G. A convenient synthesis of lubeluzole and its enantiomer: evaluation as chemosensitizing agents on human ovarian adenocarcinoma and lung carcinoma cells. Bioorg Med Chem Lett 2013; 23:4820-3. [PMID: 23886686 DOI: 10.1016/j.bmcl.2013.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/28/2022]
Abstract
Lubeluzole, a neuroprotective anti-ischemic drug, and its enantiomer were prepared following a convenient procedure based on hydrolytic kinetic resolution. The ee values were >99% and 96%, respectively, as assessed by HPLC analysis. The chemosensitizing effects of both enantiomers were evaluated in combination with either doxorubicin (human ovarian adenocarcinoma A2780 cells) or paclitaxel (human lung carcinoma A549 cells) by the MTT assay. At the lowest concentrations used, lubeluzole showed an overall and remarkable tendency to synergize with both anticancer drugs. In ovarian cancer cells a clear prevalence of antagonistic effect was observed for the R-enantiomer. The synergistic effects of lubeluzole for both drugs were observed over a wide concentration window (0.005-5 μM), the lowest limit being at least 40 times lower than human plasma concentrations previously reported as causing serious side effects.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via E Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|