1
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
2
|
Zhou Y, Zhang D, Tan P, Xian B, Jiang H, Wu Q, Huang X, Zhang P, Xiao X, Pei J. Mechanism of platelet activation and potential therapeutic effects of natural drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154463. [PMID: 36347177 DOI: 10.1016/j.phymed.2022.154463] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cardiovascular disease is one of the most concerning chronic diseases in the world. Many studies have shown that platelet overactivation is a very important factor in the occurrence and development of cardiovascular diseases. At present, the widely used antiplatelet drugs have some defects, such as drug resistance and adverse reactions. PURPOSE The purpose of this article is to summarize the main mechanisms and pathways of platelet activation, the main targets of antiplatelet aggregation, and the antiplatelet aggregation components of natural drugs and their mechanisms of action to provide new research ideas for the development and application of antiplatelet drugs. STUDY DESIGN AND METHODS In this review, we systematically searched the PubMed, Google Scholar, Web of Science, and CNKI databases and selected studies based on predefined eligibility criteria. We then assessed their quality and extracted data. RESULTS ADP, AA, THR, AF, collagen, SDF-1α, and Ca2+ can induce platelet aggregation and trigger thrombosis. Natural drugs have a good inhibitory effect on platelet activation. More than 50 kinds of natural drugs and over 120 kinds of chemical compounds, including flavonoids, alkaloids, saponins, terpenoids, coumarins, and organic acids, have significantly inhibited platelet activation activity. The MAPK pathway, cGMP-PKG pathway, cAMP-PKA pathway, PI3K-AKT pathway, PTK pathway, PLC pathway, and AA pathway are the main mechanisms and pathways of platelet activation. CONCLUSION Natural drugs and their active ingredients have shown good activity and application prospects in anti-platelet aggregation. We hope that this review provides new research ideas for the development and application of antiplatelet drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xulong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhang
- Medical Supplies Centre of PLA General Hospital, Beijing 100036, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, Beijing 10039, China.
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Wong J, Gu BJ, Teoh H, Krupa M, Monif M, Slee M, Wiley JS. Flow Cytometry Identifies an Early Stage of Platelet Apoptosis Produced by Agonists of the P2X1 and P2X7 Receptors. Platelets 2022; 33:621-631. [PMID: 35042433 DOI: 10.1080/09537104.2021.1981844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets express P2X1 receptors and our data also show the expression of P2X7 receptors. We studied the role of both receptors in platelet apoptosis by incubation of PRP with P2X agonists, then centrifuged to remove viable platelets, and analyzed the supernatant by flow cytometry to identify a sparse platelet-derived population that stained with MitoTracker dyes and CD41. BzATP, a potent agonist of P2X receptors, and ABT737, an activator of intrinsic apoptosis, produced altered platelets that stained moderately for annexin V and corresponded to an early stage apoptotic platelet (ESAP). Over a range of BzATP concentrations, we observed a dose-dependent formation of ESAPs between 5 and 500 uM BzATP, together with a variable formation of ESAPs at nanomolar ATP or BzATP (50-200 nM). Production of ESAPs occurred with αβ-meATP, while responses with either BzATP or αβ-meATP showed desensitization at a higher agonist concentration. Formation of ESAPs by either 100 nM or 0.5 mM BzATP was inhibited by preincubation of platelets with latrunculin A, an inhibitor of the actin cytoskeleton that prevents apoptosis. ESAP production was totally inhibited by preincubation of platelets with methyl-beta-cyclodextrin, which removes cholesterol from lipid rafts. Our data show that both P2X1 and P2X7 receptors are localized in platelet lipid rafts where P2X-agonists act to produce early stage apoptotic platelets.
Collapse
Affiliation(s)
- Joelyn Wong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Harry Teoh
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Malgorzata Krupa
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Monash University, Clayton, Australia
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Haematology Department, Box Hill Hospital, Australia
| |
Collapse
|
4
|
Tian M, Abdelrahman A, Baqi Y, Fuentes E, Azazna D, Spanier C, Densborn S, Hinz S, Schmid R, Müller CE. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. J Med Chem 2020; 63:6164-6178. [PMID: 32345019 DOI: 10.1021/acs.jmedchem.0c00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antagonists for the ATP-gated ion channel receptor P2X1 have potential as antithrombotics and for treating hyperactive bladder and inflammation. In this study, salicylanilide derivatives were synthesized based on a screening hit. P2X1 antagonistic potency was assessed in 1321N1 astrocytoma cells stably transfected with the human P2X1 receptor by measuring inhibition of the ATP-induced calcium influx. Structure-activity relationships were analyzed, and selectivity versus other P2X receptor subtypes was assessed. The most potent compounds, N-[3,5-bis(trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide (1, IC50 0.0192 μM) and N-[3,5-bis(trifluoromethyl)phenyl]-4-chloro-2-hydroxybenzamide (14, IC50 0.0231 μM), displayed >500-fold selectivity versus P2X2 and P2X3, and 10-fold selectivity versus P2X4 and P2X7 receptors, and inhibited collagen-induced platelet aggregation. They behaved as negative allosteric modulators, and molecular modeling studies suggested an extracellular binding site. Besides selective P2X1 antagonists, compounds with ancillary P2X4 and/or P2X7 receptor inhibition were discovered. These compounds represent the first potent, non-acidic, allosteric P2X1 receptor antagonists reported to date.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, 3460000 Talca, Chile
| | - Djamil Azazna
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Claudia Spanier
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sabrina Densborn
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
5
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Coleman JR, Moore EE, Kelher MR, Samuels JM, Cohen MJ, Sauaia A, Banerjee A, Silliman CC, Peltz E. Female platelets have distinct functional activity compared with male platelets: Implications in transfusion practice and treatment of trauma-induced coagulopathy. J Trauma Acute Care Surg 2019; 87:1052-1060. [PMID: 31162329 PMCID: PMC6814522 DOI: 10.1097/ta.0000000000002398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Females are hypercoagulable and have survival benefit in trauma-induced coagulopathy (TIC). The mechanism for this sex-specific hypercoagulability is unknown. Platelets and platelet function are central in providing hemostatic potential and are the largest contributor to clot strength. Ligands (adenosine diphosphate [ADP] and platelet-activating factor [PAF]) bind distinct platelet receptors to potentiate activation and aggregation. We hypothesize that female platelets have a differential response to ADP and PAF, resulting in greater aggregation and activation compared to males, and that estradiol pretreatment of male or female platelets enhances this activity. METHODS Platelets were collected from healthy volunteers: premenopausal/postmenopausal females (≤54 years, >54 years) and similarly aged males. Platelet aggregometry and flow cytometry (fibrinogen binding capacity) were examined. After treatment with ADP or PAF, platelet aggregation was assessed with Chronolog and activation assessed by CD41 receptor surface expression using flow cytometry. Aggregation and activation were again assessed after platelet pretreatment with estradiol. RESULTS Healthy volunteers included 12 premenopausal and 13 postmenopausal females and 18 similarly aged males. Female platelets (combined premenopausal and postmenopausal) had increased aggregation with ADP stimulation, as compared to male platelets. Male and female platelets had differential fibrinogen receptor expression, with female platelets (combined premenopausal and postmenopausal) demonstrating robust activation with ADP versus male platelets with PAF. In the presence of estradiol incubation, male platelets' activation with PAF approximated that of females (combined premenopausal and postmenopausal) and activation with PAF was enhanced in both male and female platelets. CONCLUSION Male and female platelets have differential response to stimuli, suggesting sex-dependent signaling and cellular activation. Female platelets have both increased aggregation and activation potential, and estradiol pretreatment feminizes male platelets to approximate female platelet activation with PAF. These findings offer potential explanation for sex-based differences in hemostatic potential in TIC and question whether donor sex of transfused platelets should be considered in resuscitation. Estradiol may also serve as a novel therapeutic adjunct in TIC.
Collapse
Affiliation(s)
- Julia R Coleman
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
| | - Ernest E Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Department of Surgery, 777 Bannock St, Denver, CO 80204
| | - Marguerite R Kelher
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
- Vitalant Research Institute-Denver, 717 Yosemite St, Denver, CO 80230
| | - Jason M Samuels
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
| | - Mitchell J Cohen
- Ernest E Moore Shock Trauma Center at Denver Health, Department of Surgery, 777 Bannock St, Denver, CO 80204
| | - Angela Sauaia
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
| | - Anirban Banerjee
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
| | - Christopher C Silliman
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
- Vitalant Research Institute-Denver, 717 Yosemite St, Denver, CO 80230
| | - Erik Peltz
- University of Colorado-Denver, Department of Surgery, 12605 E 16th Ave, Aurora, CO 80045
| |
Collapse
|
7
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
8
|
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y 6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells. Front Pharmacol 2018. [PMID: 29541027 PMCID: PMC5835513 DOI: 10.3389/fphar.2018.00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
9
|
Koupenova M, Ravid K. Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity. Front Pharmacol 2018; 9:37. [PMID: 29441021 PMCID: PMC5797577 DOI: 10.3389/fphar.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Platelets are small anucleated cells present only in mammals. Platelets mediate intravascular hemostatic balance, prevent interstitial bleeding, and have a major role in thrombosis. Activation of platelet purinergic receptors is instrumental in initiation of hemostasis and formation of the hemostatic plug, although this activation process becomes problematic in pathological settings of thrombosis. This review briefly outlines the roles and function of currently known platelet purinergic receptors (P1 and P2) in the setting of hemostasis and thrombosis. Additionally, we discuss recent novel studies on purinergic receptor distribution according to heterogeneous platelet size, and the possible implication of this distribution on hemostatic function.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katya Ravid
- Departments of Medicine and Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
10
|
Ilkan Z, Watson S, Watson SP, Mahaut-Smith MP. P2X1 Receptors Amplify FcγRIIa-Induced Ca2+ Increases and Functional Responses in Human Platelets. Thromb Haemost 2018; 118:369-380. [PMID: 29443373 PMCID: PMC6260114 DOI: 10.1160/th17-07-0530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelets express key receptors of the innate immune system such as FcγRIIa and Toll-like receptors (TLR). P2X1 cation channels amplify the platelet responses to several major platelet stimuli, particularly glycoprotein (GP)VI and TLR2/1, whereas their contribution to Src tyrosine kinase-dependent FcγRIIa receptors remains unknown. We investigated the role of P2X1 receptors during activation of FcγRIIa in human platelets, following stimulation by cross-linking of an anti-FcγRIIa monoclonal antibody (mAb) IV.3, or bacterial stimulation with
Streptococcus sanguinis
. Activation was assessed in washed platelet suspensions via measurement of intracellular Ca
2+
([Ca
2+
]
i
) increases, ATP release and aggregation. P2X1 activity was abolished by pre-addition of α,β-meATP, exclusion of apyrase or the antagonist NF449. FcγRIIa activation evoked a robust increase in [Ca
2+
]
i
(441 ± 33 nM at 30 μg/mL mAb), which was reduced to a similar extent (to 66–70% of control) by NF449, pre-exposure to α,β-meATP or apyrase omission, demonstrating a significant P2X1 receptor contribution. FcγRIIa activation-dependent P2X1 responses were partially resistant to nitric oxide (NO), but abrogated by 500 nM prostacyclin (PGI
2
). Aggregation responses to bacteria and FcγRIIa activation were also inhibited by P2X1 receptor desensitization (to 66 and 42% of control, respectively). However, FcγRIIa-mediated tyrosine phosphorylation and ATP release were not significantly altered by the loss of P2X1 activity. In conclusion, we show that P2X1 receptors enhance platelet FcγRIIa receptor-evoked aggregation through an increase in [Ca
2+
]
i
downstream of the initial tyrosine phosphorylation events and early dense granule release. This represents a further route whereby ATP-gated cation channels can contribute to platelet-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Zeki Ilkan
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Uekawa A, Yamanaka H, Lieben L, Kimira Y, Uehara M, Yamamoto Y, Kato S, Ito K, Carmeliet G, Masuyama R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells. FASEB J 2018; 32:1903-1915. [PMID: 29282249 DOI: 10.1096/fj.201700631r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH)2D3] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH)2D3-independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction. Accordingly, calcium transport in cultured intestinal epithelial cells was increased when the apical side was exposed to low phosphate levels (0.5 mM) compared with normal or high phosphate levels (1.0 or 5.0 mM, respectively). Mechanistically, low phosphate increased ATP in the apical side medium and allowed calcium entry into epithelial cells via the P2X7 purinoreceptor, which results in increased calcium transport. We found that luminal ATP was regulated by the release and degradation of ATP at the epithelium, and phosphate restriction increased ATP release from epithelial cells via connexin-43 hemichannels. Furthermore, ATP degradation by ectonucleotide pyrophosphatase-1 was reduced, which was caused by the reduction of the MAPK cascade. These findings indicate that luminal ATP metabolism regulates transcellular calcium transport in the intestine by an 1,25(OH)2D3-independent mechanism in response to dietary phosphate levels.-Uekawa, A., Yamanaka, H., Lieben, L., Kimira, Y., Uehara, M., Yamamoto, Y., Kato, S., Ito, K., Carmeliet, G., Masuyama, R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.
Collapse
Affiliation(s)
- Atsushi Uekawa
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoki Yamanaka
- Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | - Liesbet Lieben
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Yoshifumi Kimira
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoko Yamamoto
- Surgical Oncology and Vascular Surgery, University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Ritsuko Masuyama
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
12
|
Soaita I, Yin W, Rubenstein DA. Glycated albumin modifies platelet adhesion and aggregation responses. Platelets 2017; 28:682-690. [PMID: 28067098 DOI: 10.1080/09537104.2016.1260703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A diabetic vasculature is detrimental to cardiovascular health through the actions of advanced glycation end products (AGEs) on endothelial cells and platelets. Platelets activated by AGEs agonize endothelial responses promoting cardiovascular disease (CVD) development. While it has been established that AGEs can alter platelet functions, little is known about the specific platelet pathways that AGEs modify. Therefore, we evaluated the effects of AGEs on specific salient platelet pathways related to CVDs and whether the effects that AGEs elicit are dependent on glycation extent. To accomplish our objective, platelets were incubated with reversibly or irreversibly glycated albumin. A time course for adhesion and aggregation agonist receptor expression was assessed. Optical platelet aggregometry was used to confirm the functional activity of platelets after AGE exposure. In general, platelets subjected to glycated albumin had a significantly enhanced adhesion and aggregation potential. Furthermore, we observed an enhancement in dense body secretion and intracellular calcium concentration. This was especially prevalent for platelets exposed to irreversibly glycated albumin. Additionally, functional aggregation correlated well with receptor expression, suggesting that AGE-induced altered receptor sensitivity translated to altered platelet functions. Our findings indicate that under diabetic vascular conditions platelets become more susceptible to activation and aggregation due to an overall enhanced receptor expression, which may act to promote CVD development.
Collapse
Affiliation(s)
- Ioana Soaita
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| | - Wei Yin
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| | - David A Rubenstein
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| |
Collapse
|
13
|
Panhwar F, Rainbow RD, Jackson R, Davies NW. Ca2+ dependent but PKC independent signalling mediates UTP induced contraction of rat mesenteric arteries. J Smooth Muscle Res 2016; 51:58-69. [PMID: 26447104 PMCID: PMC5137259 DOI: 10.1540/jsmr.51.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Uridine triphosphate (UTP) can be released from damaged cells to cause vasoconstriction.
Although UTP is known to act through P2Y receptors and PLC activation in vascular smooth
muscle, the role of PKC in generating the response is somewhat unclear. Here we have used
Tat-linked membrane permeable peptide inhibitors of PKC to assess the general role of PKC
and also of specific isoforms of PKC in the UTP induced contraction of rat mesenteric
artery. We examined the effect of PKC inhibition on UTP induced contraction, increased
cytoplasmic Ca2+ and reduction of K+ currents and found that PKC
inhibition caused a relatively small attenuation of contraction but had little effect on
changes in cytoplasmic Ca2+. UTP attenuation of both voltage-gated
(Kv) and ATP-dependent (KATP) K+ currents was abolished
when intracellular Ca2+ was decreased from 100 to 20 nM. PKC inhibition reduced
slightly the ability of UTP to attenuate Kv currents but had no effect on
KATP current inhibition. In conclusion, both UTP induced contraction of
mesenteric artery and the inhibition of Kv and KATP currents of
mesenteric artery smooth muscle cells by UTP are relatively independent of PKC activation;
furthermore, the inhibition of both Kv and KATP currents requires
intracellular Ca2+.
Collapse
Affiliation(s)
- Fouzia Panhwar
- Departments of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
14
|
Wright A, Mahaut-Smith M, Symon F, Sylvius N, Ran S, Bafadhel M, Muessel M, Bradding P, Wardlaw A, Vial C. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:4877-84. [PMID: 27183585 DOI: 10.4049/jimmunol.1501585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration.
Collapse
Affiliation(s)
- Adam Wright
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom
| | - Martyn Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Fiona Symon
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Nicolas Sylvius
- Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Shaun Ran
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Michelle Muessel
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Andrew Wardlaw
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Catherine Vial
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
15
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
16
|
Purinergic control of inflammation and thrombosis: Role of P2X1 receptors. Comput Struct Biotechnol J 2014; 13:106-10. [PMID: 25709760 PMCID: PMC4334884 DOI: 10.1016/j.csbj.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.
Collapse
|