1
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Okubo H, Atsukawa M, Okubo T, Ando H, Nakadera E, Ikejima K, Nagahara A. Gadoxetic acid-enhanced magnetic resonance imaging predicts hyperbilirubinemia induced by glecaprevir during hepatitis C virus treatment. Sci Rep 2022; 12:7847. [PMID: 35552472 PMCID: PMC9098462 DOI: 10.1038/s41598-022-11707-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glecaprevir is a substrate for organic anion-transporting polypeptide (OATP) 1B1/1B3, which transports bilirubin. Hyperbilirubinemia is an adverse event during anti-hepatitis C virus treatment with glecaprevir and pibrentasvir. Gadoxetic acid is also transported by OATP1B1/1B3, and we aimed to evaluate whether gadoxetic acid-enhanced magnetic resonance (MR) imaging was associated with glecaprevir trough concentrations (Ctrough). We further determined whether this was predictive of hyperbilirubinemia development in a cohort of 33 patients. The contrast enhancement index (CEI), a measure of hepatic enhancement effect on the hepatobiliary image, was assessed. Glecaprevir Ctrough was determined 7 days after administration. Five of the 33 patients (15%) developed Common Terminology Criteria for Adverse Events grade ≥ 2 hyperbilirubinemia. We found a negative relationship between CEI and Ctrough (r = − 0.726, p < 0.001). The partial correlation coefficient between CEI and Ctrough was − 0.654 (p < 0.001), while excluding the effects of albumin, FIB-4 index, and indirect bilirubin at baseline. The Ctrough was significantly higher in patients with hyperbilirubinemia than in those without (p = 0.008). In multivariate analysis, CEI ≤ 1.71 was an independent factor influencing the development of hyperbilirubinemia (p = 0.046). Our findings indicate that gadoxetic acid MR imaging can help predict glecaprevir concentration and development of hyperbilirubinemia.
Collapse
Affiliation(s)
- Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan.
| | - Masanori Atsukawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.,Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Tomomi Okubo
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Eisuke Nakadera
- Department of Gastroenterology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
SWATH-Based Comprehensive Determination of the Localization of Apical and Basolateral Membrane Proteins Using Mouse Liver as a Model Tissue. Biomedicines 2022; 10:biomedicines10020383. [PMID: 35203592 PMCID: PMC8962430 DOI: 10.3390/biomedicines10020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to develop a method to comprehensively determine the localization of apical and basolateral membrane proteins, using a combination of apical/basolateral membrane separation and accurate SWATH (Sequential Window Acquisition of all THeoretical fragment ion spectra) proteomics. The SWATH analysis of basolateral and apical plasma membrane fractions in mouse liver quantified the protein expression of 1373 proteins. The basolateral/apical ratios of the protein expression levels were compared with the reported immunohistochemical localization for 41 model proteins (23 basolateral, 11 apical and 7 both membrane-localized proteins). Three groups were perfectly distinguished. Border lines to distinguish the apical-, both- and basolateral localizations were determined to be 0.766 and 1.42 based on probability density. The method that was established was then applied to the comprehensive determination of the proteins in mouse liver. The findings indicated that 154 and 125 proteins were localized in the apical and basolateral membranes, respectively. The levels of receptors, CD antigens and integrins, enzymes and Ras-related molecules were much higher in apical membranes than in basolateral membranes. In contrast, the levels of adhesion molecules, scaffold proteins and transporters in basolateral membranes were much higher than in apical membranes.
Collapse
|
5
|
Roscam Abbing RL, Slijepcevic D, Donkers JM, Havinga R, Duijst S, Paulusma CC, Kuiper J, Kuipers F, Groen AK, Oude Elferink RP, van de Graaf SF. Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice. Hepatology 2020; 71:247-258. [PMID: 31136002 PMCID: PMC7003915 DOI: 10.1002/hep.30792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B-mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8-/- mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1-/- mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein-derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion.
Collapse
Affiliation(s)
- Reinout L.P. Roscam Abbing
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Rick Havinga
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands
| | - Albert K. Groen
- Departments of Pediatrics & Laboratory MedicineUniversity Medical Center GroningenGroningenThe Netherlands,Department of Internal and Vascular Medicine, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands,Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Takayama M, Takatsu H, Hamamoto A, Inoue H, Naito T, Nakayama K, Shin HW. The cytoplasmic C-terminal region of the ATP11C variant determines its localization at the polarized plasma membrane. J Cell Sci 2019; 132:jcs.231720. [PMID: 31371488 DOI: 10.1242/jcs.231720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
ATP11C, a member of the P4-ATPase family, is a major phosphatidylserine (PS)-flippase located at the plasma membrane. ATP11C deficiency causes a defect in B-cell maturation, anemia and hyperbilirubinemia. Although there are several alternatively spliced variants derived from the ATP11C gene, the functional differences between them have not been considered. Here, we compared and characterized three C-terminal spliced forms (we designated as ATP11C-a, ATP11C-b and ATP11C-c), with respect to their expression patterns in cell types and tissues, and their subcellular localizations. We had previously shown that the C-terminus of ATP11C-a is critical for endocytosis upon PKC activation. Here, we found that ATP11C-b and ATP11C-c did not undergo endocytosis upon PKC activation. Importantly, we also found that ATP11C-b localized to a limited region of the plasma membrane in polarized cells, whereas ATP11C-a was distributed on the entire plasma membrane in both polarized and non-polarized cells. Moreover, we successfully identified LLXY residues within the ATP11C-b C-terminus as a critical motif for the polarized localization. These results suggest that the ATP11C-b regulates PS distribution in distinct regions of the plasma membrane in polarized cells.
Collapse
Affiliation(s)
- Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Hamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroki Inoue
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoki Naito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Phospholipid flippases enable precursor B cells to flee engulfment by macrophages. Proc Natl Acad Sci U S A 2018; 115:12212-12217. [PMID: 30355768 DOI: 10.1073/pnas.1814323115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ATP11A and ATP11C, members of the P4-ATPases, are flippases that translocate phosphatidylserine (PtdSer) from the outer to inner leaflet of the plasma membrane. Using the W3 T lymphoma cell line, we found that Ca2+ ionophore-induced phospholipid scrambling caused prolonged PtdSer exposure in cells lacking both the ATP11A and ATP11C genes. ATP11C-null (ATP11C -/y ) mutant mice exhibit severe B-cell deficiency. In wild-type mice, ATP11C was expressed at all B-cell developmental stages, while ATP11A was not expressed after pro-B-cell stages, indicating that ATP11C -/y early B-cell progenitors lacked plasma membrane flippases. The receptor kinases MerTK and Axl are known to be essential for the PtdSer-mediated engulfment of apoptotic cells by macrophages. MerTK -/- and Axl -/- double deficiency fully rescued the lymphopenia in the ATP11C -/y bone marrow. Many of the rescued ATP11C -/y pre-B and immature B cells exposed PtdSer, and these cells were engulfed alive by wild-type peritoneal macrophages, in a PtdSer-dependent manner. These results indicate that ATP11A and ATP11C in precursor B cells are essential for rapidly internalizing PtdSer from the cell surface to prevent the cells' engulfment by macrophages.
Collapse
|
8
|
Okubo H, Ando H, Sorin Y, Nakadera E, Fukada H, Morishige J, Miyazaki A, Ikejima K. Gadoxetic acid-enhanced magnetic resonance imaging to predict paritaprevir-induced hyperbilirubinemia during treatment of hepatitis C. PLoS One 2018; 13:e0196747. [PMID: 29709031 PMCID: PMC5927452 DOI: 10.1371/journal.pone.0196747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background Paritaprevir inhibits organic anion–transporting polypeptide (OATP)1B1 and OATP1B3, which transport bilirubin. Hyperbilirubinemia is an adverse event reported during hepatitis C treatment. Gadoxetic acid is also transported by OATP1B1/1B3. We evaluated whether the enhancement effect in gadoxetic acid–enhanced magnetic resonance (MR) imaging could predict the plasma concentration of paritaprevir and might anticipate the development of hyperbilirubinemia. Methods This prospective study evaluated 27 patients with hepatitis C who underwent gadoxetic acid–enhanced MR imaging prior to treatment with ombitasvir, paritaprevir, and ritonavir. The contrast enhancement index (CEI), a measure of liver enhancement during the hepatobiliary phase, was assessed. Plasma trough concentrations, and concentrations at 2, 4, and 6 h after dosing were determined 7 d after the start of treatment. Results Seven patients (26%) developed hyperbilirubinemia (≥ 1.6 mg/dl). Paritaprevir trough concentration (Ctrough) was significantly higher in patients with hyperbilirubinemia than in those without (p = 0.022). We found an inverse relationship between CEI and Ctrough (r = 0.612, p = 0.001), while there was not a significantly weak inverse relationship between AUC0–6 h and CEI (r = −0.338, p = 0.085). The partial correlation coefficient between CEI and Ctrough was −0.425 (p = 0.034), while excluding the effects of albumin and the FIB-4 index. Receiver operating characteristic (ROC) curve analysis showed that the CEI was relatively accurate in predicting hyperbilirubinemia, with area under the ROC of 0.882. Multivariate analysis showed that the CEI < 1.61 was the only independent predictor related to the development of hyperbilirubinemia, with an odds ratio of 9.08 (95% confidence interval 1.05–78.86, p = 0.046). Conclusions Hepatic enhancement with gadoxetic acid was independently related to paritaprevir concentration and was an independent pretreatment factor in predicting hyperbilirubinemia. Gadoxetic acid–enhanced MR imaging can therefore be useful in determining the risk of paritaprevir-induced hyperbilirubinemia.
Collapse
Affiliation(s)
- Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
- * E-mail:
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yushi Sorin
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Eisuke Nakadera
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Hiroo Fukada
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Junichi Morishige
- Department of Cellular and Molecular Function Analysis, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Akihisa Miyazaki
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, Shin HW. Phospholipid flippase ATP11C is endocytosed and downregulated following Ca 2+-mediated protein kinase C activation. Nat Commun 2017; 8:1423. [PMID: 29123098 PMCID: PMC5680300 DOI: 10.1038/s41467-017-01338-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/09/2017] [Indexed: 12/15/2022] Open
Abstract
We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase. ATP11C is a flippase that uses ATP hydrolysis to translocate phospholipids at the plasma membrane. Here, the authors show that the activation of Ca2+-dependent protein kinase C increases ATP11C endocytosis thus downregulating phospholipid translocation.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoki Naito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoto Takada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuya Tsumagari
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasushi Ishihama
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Liu L, Zhang L, Zhang L, Yang F, Zhu X, Lu Z, Yang Y, Lu H, Feng L, Wang Z, Chen H, Yan S, Wang L, Ju Z, Jin H, Zhu X. Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2775-2787. [PMID: 28919113 DOI: 10.1016/j.ajpath.2017.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mutations in ATP8B1 or ATP11C (members of P4-type ATPases) cause progressive familial intrahepatic cholestasis type 1 in human or intrahepatic cholestasis in mice. Transmembrane protein 30A (TMEM30A), a β-subunit, is essential for the function of ATP8B1 and ATP11C. However, its role in the etiology of cholestasis remains poorly understood. To investigate the function of TMEM30A in bile salt (BS) homeostasis, we developed Tmem30a liver-specific knockout (LKO) mice. Tmem30a LKO mice experienced hyperbilirubinemia, hypercholanemia, inflammatory infiltration, ductular proliferation, and liver fibrosis. The expression and membrane localization of ATP8B1 and ATP11C were significantly reduced in Tmem30a LKO mice, which correlated with the impaired expression and localization of BS transporters, such as OATP1A4, OATP1B2, NTCP, BSEP, and MRP2. The proteasome inhibitor bortezomib partially restored total protein levels of BS transporters but not the localization of BS transporters in the membrane. Furthermore, the expression of nuclear receptors, including FXRα, RXRα, HNF4α, LRH-1, and SHP, was also down-regulated. A cholic acid-supplemented diet exacerbated the liver damage in Tmem30a LKO mice. TMEM30A deficiency led to intrahepatic cholestasis in mice by impairing the expression and localization of BS transporters and the expression of related nuclear receptors. Therefore, TMEM30A may be a novel genetic determinant of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Leiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lingling Zhang
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Leibniz Institute for Age Research - Fritz Lipmann Institute, Friedrich-Schiller University of Jena, Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhongjie Lu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqi Lu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Hepato-Biliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
11
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
12
|
Liu B, Li Y, Ji H, Lu H, Li H, Shi Y. Glutamine attenuates obstructive cholestasis in rats via farnesoid X receptor–mediated regulation of Bsep and Mrp2. Can J Physiol Pharmacol 2017; 95:215-223. [PMID: 28051334 DOI: 10.1139/cjpp-2016-0389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To investigate the protective effect of glutamine (Gln) against obstructive cholestasis in association with farnesoid X receptor (FXR) activation, an obstructive cholestasis model was established in male Sprague–Dawley rats by bile duct ligation (BDL). Serum biomarkers and hematoxylin plus eosin staining were used to identify the degree of hepatic injury in the rats with obstructive cholestasis after Gln treatment. Immunohistochemistry, real-time PCR, Western blot, cultured primary rat hepatocytes with FXR knockdown, and dual-luciferase reporter assay were performed to elucidate the mechanisms underlying Gln hepatoprotection. We found that Gln treatment protected against obstructive cholestasis induced by BDL through reducing hepatocyte injury. Upregulation of the hepatic efflux transporters small heterodimer partner (Shp), bile salt export pump (Bsep), and multidrug resistance–associated protein 2 (Mrp2), and inhibition of the hepatic uptake transporter Na+/taurocholate cotransporting polypeptide (Ntcp) and the bile acid synthesis enzyme cholesterol 7α-hydroxylase (Cyp7a1) expression were observed in rats with BDL treated with Gln in vivo. Furthermore, the regulatory effect of Gln on Bsep and Mrp2 expression was abrogated after FXR knockdown in rat primary cultured hepatocytes. Luciferase assay HepG2 cells also illustrated FXR was a direct target for Gln treatment. In conclusion, the regulation of Bsep and Mrp2 expression mediated by FXR might be an important mechanism for Gln against obstructive cholestasis.
Collapse
Affiliation(s)
- Bingli Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yakun Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
13
|
Okubo H, Kitamura T, Ando H, Fukada H, Igusa Y, Kokubu S, Miyazaki A, Fujimura A, Shiina S, Watanabe S. Gadoxetic Acid-Enhanced MR Imaging Predicts Simeprevir-Induced Hyperbilirubinemia During Hepatitis C Virus Treatment: A Pilot Study. J Clin Pharmacol 2016; 57:369-375. [PMID: 27530761 DOI: 10.1002/jcph.811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Simeprevir is a substrate for organic anion-transporting polypeptides (OATPs) that transport bilirubin. Hyperbilirubinemia is an adverse event reported during treatment of chronic hepatitis C patients with simeprevir plus pegylated interferon and ribavirin. Because gadoxetic acid is also a substrate of OATPs, pretreatment gadoxetic acid-enhanced magnetic resonance imaging (MRI) may predict hyperbilirubinemia during treatment. This prospective study therefore evaluated 11 consecutive patients with chronic hepatitis C who underwent gadoxetic acid-enhanced MRI prior to treatment with simeprevir plus pegylated interferon and ribavirin for 12 weeks, followed by pegylated interferon and ribavirin for an additional 12 weeks. Their contrast enhancement index (CEI), an index of liver parenchymal enhancement during the hepatobiliary phase, was assessed before treatment. Plasma trough concentrations (Ctrough ) of simeprevir were determined 7 days after its administration, and serum bilirubin concentrations were measured throughout the course of treatment. Six patients (55%) developed hyperbilirubinemia (≥1.6 mg/dL) during treatment. Ctrough was significantly higher in patients with than without hyperbilirubinemia (P = .009), with a strong inverse relationship between CEI and Ctrough (r = -0.911, P < .001). CEI was significantly lower in patients with than without hyperbilirubinemia (P = .009), but there were no significant differences between the 2 groups in pretreatment serum albumin concentrations and FIB-4 index, an index of liver fibrosis. Hepatic enhancement with gadoxetic acid was related to Ctrough of simeprevir. Gadoxetic acid-enhanced magnetic resonance imaging may predict the development of hyperbilirubinemia during treatment of hepatitis C patients with simeprevir plus pegylated interferon and ribavirin.
Collapse
Affiliation(s)
- Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Tsuneo Kitamura
- Department of Gastroenterology, Juntendo University Urayasu Hospital, Tokyo, Japan
| | - Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroo Fukada
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yuki Igusa
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Shigehiro Kokubu
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Akihisa Miyazaki
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
de Waart DR, Naik J, Utsunomiya KS, Duijst S, Ho-Mok K, Bolier AR, Hiralall J, Bull LN, Bosma PJ, Oude Elferink RP, Paulusma CC. ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes. Hepatology 2016; 64:161-74. [PMID: 26926206 PMCID: PMC5266587 DOI: 10.1002/hep.28522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED ATP11C is a homolog of ATP8B1, both of which catalyze the transport of phospholipids in biological membranes. Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type1 in humans, which is characterized by a canalicular cholestasis. Mice deficient in ATP11C are characterized by a conjugated hyperbilirubinemia and an unconjugated hypercholanemia. Here, we have studied the hypothesis that ATP11C deficiency interferes with basolateral uptake of unconjugated bile salts, a process mediated by organic anion-transporting polypeptide (OATP) 1B2. ATP11C localized to the basolateral membrane of central hepatocytes in the liver lobule of control mice. In ATP11C-deficient mice, plasma total bilirubin levels were 6-fold increased, compared to control, of which ∼65% was conjugated and ∼35% unconjugated. Plasma total bile salts were 10-fold increased and were mostly present as unconjugated species. Functional studies in ATP11C-deficient mice indicated that hepatic uptake of unconjugated bile salts was strongly impaired whereas uptake of conjugated bile salts was unaffected. Western blotting and immunofluorescence analysis demonstrated near absence of basolateral bile salt uptake transporters OATP1B2, OATP1A1, OATP1A4, and Na(+) -taurocholate-cotransporting polypeptide only in central hepatocytes of ATP11C-deficient liver. In vivo application of the proteasome inhibitor, bortezomib, partially restored expression of these proteins, but not their localization. Furthermore, we observed post-translational down-regulation of ATP11C protein in livers from cholestatic mice, which coincided with reduced OATP1B2 levels. CONCLUSIONS ATP11C is essential for basolateral membrane localization of multiple bile salt transport proteins in central hepatocytes and may act as a gatekeeper to prevent hepatic bile salt overload. Conjugated hyperbilirubinemia and unconjugated hypercholanemia and loss of OATP expression in ATP11C-deficient liver strongly resemble the characteristics of Rotor syndrome, suggesting that mutations in ATP11C can predispose to Rotor syndrome. (Hepatology 2016;64:161-174).
Collapse
Affiliation(s)
- Dirk R. de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jyoti Naik
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Kam Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - A. Ruth Bolier
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan Hiralall
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Laura N. Bull
- Liver Center Laboratory, Department of Medicine, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Chaubey PM, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS One 2016; 11:e0158033. [PMID: 27347675 PMCID: PMC4922570 DOI: 10.1371/journal.pone.0158033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Pururawa Mayank Chaubey
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
16
|
The phospholipid flippase ATP8B1 mediates apical localization of the cystic fibrosis transmembrane regulator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2280-8. [PMID: 27301931 DOI: 10.1016/j.bbamcr.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022]
Abstract
Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency.
Collapse
|
17
|
Zeng M, Sun R, Basu S, Ma Y, Ge S, Yin T, Gao S, Zhang J, Hu M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol Nutr Food Res 2016; 60:1006-19. [PMID: 26843117 DOI: 10.1002/mnfr.201500692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
SCOPE Enterohepatic recycling is often thought to involve mostly phase II metabolites generated in the liver. This study aims to determine if direct biliary excretion of extrahepatically generated glucuronides would also enable recycling. METHODS AND RESULTS Conventional and modified intestinal perfusion models along with intestinal and liver microsomes were used to determine the contribution of extrahepatically derived glucuronides. Glucuronidation of four flavonoids (genistein, biochanin A, apigenin, and chrysin at 2.5-20 μM) were generally more rapid in the hepatic than intestinal microsomes. Furthermore, when aglycones (at 10 μM each) were perfused, larger (1.7-9 fold) amounts of glucuronides were found in the bile than in the luminal perfusate. However, higher concentrations of glucuronides were not found in jugular vein than portal vein, and apigenin glucuronide actually displayed a significantly lower concentration in jugular vein (<1 nM) than portal vein (≈4 nM). A direct portal infusion of four flavonoid glucuronides (5.9-10.4 μM perfused at 2 mL/h) showed that the vast majority (>65%) of the glucuronides (except for biochanin A glucuronide) administered were efficiently excreted into the bile. CONCLUSION Direct biliary excretion of extrahepatically generated flavonoid glucuronides is a highly efficient clearance mechanism, which should enable enterohepatic recycling of flavonoids without hepatic conjugating enzymes.
Collapse
Affiliation(s)
- Min Zeng
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rongjin Sun
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yong Ma
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jun Zhang
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China
| | - Ming Hu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Nagata S, Suzuki J, Segawa K, Fujii T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 2016; 23:952-61. [PMID: 26891692 DOI: 10.1038/cdd.2016.7] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylserine (PtdSer) is a phospholipid that is abundant in eukaryotic plasma membranes. An ATP-dependent enzyme called flippase normally keeps PtdSer inside the cell, but PtdSer is exposed by the action of scramblase on the cell's surface in biological processes such as apoptosis and platelet activation. Once exposed to the cell surface, PtdSer acts as an 'eat me' signal on dead cells, and creates a scaffold for blood-clotting factors on activated platelets. The molecular identities of the flippase and scramblase that work at plasma membranes have long eluded researchers. Indeed, their identity as well as the mechanism of the PtdSer exposure to the cell surface has only recently been revealed. Here, we describe how PtdSer is exposed in apoptotic cells and in activated platelets, and discuss PtdSer exposure in other biological processes.
Collapse
Affiliation(s)
- S Nagata
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - J Suzuki
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Segawa
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Fujii
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|