1
|
Piroozkhah M, Aghajani A, Jalali P, Shahmoradi A, Piroozkhah M, Tadlili Y, Salehi Z. Guanylate cyclase-C Signaling Axis as a theragnostic target in colorectal cancer: a systematic review of literature. Front Oncol 2023; 13:1277265. [PMID: 37927469 PMCID: PMC10623427 DOI: 10.3389/fonc.2023.1277265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis. However, it has been found that these peptides may also contribute to the development of CRC. This systematic review focuses on the latest research on the GC-C signaling axis in CRC. Methods According to the aim of the study, a systematic literature search was conducted on Medline and PubMed databases. Ultimately, a total of 40 articles were gathered for the systematic review. Results Our systematic literature search revealed that alterations in GC-C signaling compartments in CRC tissue have demonstrated potential as diagnostic, prognostic, and therapeutic markers. This research highlights a potential treatment for CRC by targeting the GC-C signaling axis. Promising results from recent studies have explored the use of this signaling axis to develop new vaccines and chimeric antigen receptors that may be used in future clinical trials. Conclusion The findings presented in this review provide compelling evidence that targeting the GC-C signaling axis may be an advantageous approach for treating CRC.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Aghajani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Tadlili
- Department of Molecular Cell Biology, Microbiology Trend, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fernández-Sáez EM, Losarcos M, Becerril S, Valentí V, Moncada R, Martín M, Burrell MA, Catalán V, Gómez-Ambrosi J, Mugueta C, Colina I, Silva C, Escalada J, Frühbeck G, Rodríguez A. Uroguanylin prevents hepatic steatosis, mitochondrial dysfunction and fibrosis in obesity-associated NAFLD. Metabolism 2023; 147:155663. [PMID: 37517791 DOI: 10.1016/j.metabol.2023.155663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND The biological mediators supporting the resolution of liver steatosis, inflammation and fibrosis after bariatric surgery in patients with obesity and NAFLD remain unclear. We sought to analyze whether uroguanylin and guanylin, two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of obesity-associated NAFLD after bariatric surgery. METHODS Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 214 participants undergoing bariatric surgery with biopsy-proven NAFLD diagnosis. Pathways involved in lipid metabolism, mitochondrial network and fibrogenesis were evaluated in liver biopsies (n = 137). The effect of guanylin and uroguanylin on these metabolic functions was assessed in HepG2 hepatocytes and LX-2 hepatic stellate cells (HSC) under lipotoxic and profibrogenic conditions. RESULTS Plasma and hepatic expression of GUCA2B were decreased in obesity-associated NAFLD. Both GUCA2A and GUCA2B levels were increased after sleeve gastrectomy and Roux-en-Y gastric bypass in parallel to the improved liver function. The liver of patients with type 2 diabetes showed impaired mitochondrial β-oxidation, biogenesis, dynamics as well as increased fibrosis. Uroguanylin diminished the lipotoxicity in palmitate-treated HepG2 hepatocytes, evidenced by decresased steatosis and lipogenic factors, as well as increased mitochondrial network expression, AMPK-induced β-oxidation and oxygen consumption rate. Additionally, uroguanylin, but not guanylin, reversed HSC myofibroblast transdifferentiation as well as fibrogenesis after TGF-β1 stimulation. CONCLUSIONS Uroguanylin constitutes a protective factor against lipotoxicity, mitochondrial dysfunction and fibrosis. Increased GUCA2B levels might contribute to improve liver injury in patients with obesity-associated NAFLD after bariatric surgery.
Collapse
Affiliation(s)
| | - Maite Losarcos
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - María A Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carmen Mugueta
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Inmaculada Colina
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
3
|
Jiang L, Feng JG, Wang G, Zhu YP, Ju HX, Li DC, Liu Y. Circulating guanylyl cyclase C (GCC) mRNA is a reliable metastatic predictor and prognostic index of colorectal cancer. Transl Cancer Res 2020; 9:1843-1850. [PMID: 35117531 PMCID: PMC8798717 DOI: 10.21037/tcr.2020.02.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
Background Currently, few specific biomarkers or standard cutoff values are available for circulating tumor cells (CTCs) detection and survival prediction in patients with early stage colorectal cancer (CRC). Guanylyl cyclase C (GCC) presents as a specific expression in intestinal tumor cells and during their metastases, indicating its potential application as a metastatic predictor of CRC. Methods The circulating GCC mRNA of 160 colorectal cancer patients at stage I–III was detected via quantitative real-time (qRT)-PCR in our study, and the correlation of GCC mRNA level with tumor metastasis and long-term survival was explored. Results GCC mRNA was found to be positive in 43 out of 160 CRC patients and negative in ten healthy controls. It was found that GCC mRNA over the baseline (>100 copies/µL and 200 copies/µL) showed a significant correlation with disease-free survival (DFS) and overall survival (OS) in the stage II subgroup. It was further revealed that GCC mRNA over 300 copies/µL or higher than the median value of copy numbers was significantly correlated with reduced OS and DFS in CRC patients. A nomogram model based on variables including GCC mRNA copy number was established for predicting the OS of CRC patients (AUC =0.98). Conclusions Circulating GCC mRNA over baseline is a reliable predictor for tumor metastasis and can be a prognostic index in CRC patients.
Collapse
Affiliation(s)
- Lai Jiang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Jian-Guo Feng
- Laboratory of Molecular Biology, Institute of Cancer Research and Basic Medical Sciences of the Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Gang Wang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yu-Ping Zhu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Hai-Xing Ju
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - De-Chuan Li
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yong Liu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| |
Collapse
|
4
|
Uroguanylin Improves Leptin Responsiveness in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11040752. [PMID: 30935076 PMCID: PMC6520813 DOI: 10.3390/nu11040752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of UGN and leptin potentiates leptin’s ability to decrease the food intake and body weight in DIO mice, and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K, but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings indicate that UGN improves leptin sensitivity in DIO mice.
Collapse
|
5
|
Yarla NS, Gali H, Pathuri G, Smriti S, Farooqui M, Panneerselvam J, Kumar G, Madka V, Rao CV. Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention. Semin Cancer Biol 2018; 56:168-174. [PMID: 30189250 DOI: 10.1016/j.semcancer.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.
Collapse
Affiliation(s)
- N S Yarla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - H Gali
- Department of Pharmaceutical Sciences, College of Pharmacy, and Stephenson Oklahoma Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Smriti
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Panneerselvam
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA
| | - V Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Fernandez-Cachon ML, Pedersen SL, Rigbolt KT, Zhang C, Fabricius K, Hansen HH, Elster L, Fink LN, Schäfer M, Rhee NA, Langholz E, Wandall E, Friis SU, Vilmann P, Kristiansen VB, Schmidt C, Schreiter K, Breitschopf K, Hübschle T, Jorsal T, Vilsbøll T, Schmidt T, Theis S, Knop FK, Larsen PJ, Jelsing J. Guanylin and uroguanylin mRNA expression is increased following Roux-en-Y gastric bypass, but guanylins do not play a significant role in body weight regulation and glycemic control. Peptides 2018; 101:32-43. [PMID: 29289697 DOI: 10.1016/j.peptides.2017.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
AIM To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nicolai A Rhee
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ebbe Langholz
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Erik Wandall
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Steffen U Friis
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter Vilmann
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | | | | - Tina Jorsal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | |
Collapse
|
7
|
Pilot Study Measuring the Novel Satiety Hormone, Pro-Uroguanylin, in Adolescents With and Without Obesity. J Pediatr Gastroenterol Nutr 2018; 66:489-495. [PMID: 29112082 PMCID: PMC5825243 DOI: 10.1097/mpg.0000000000001796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Disruption of satiety signaling may lead to increased caloric intake and obesity. Uroguanylin, the intestinal hormone, travels as a precursor to the central nervous system where it activates guanylyl cyclase C and stimulates pro-satiety neurons. Rodent studies have demonstrated that guanylyl cyclase C-knockout mice overeat and have increased weight gain versus wild-type mice and hyper-caloric obesity diminishes uroguanylin expression. We measured circulating plasma pro-uroguanylin, along with other gastrointestinal peptides and inflammatory markers, in human adolescents with and without obesity, as a pilot study. We hypothesized that adolescents with obesity would have less circulating pro-uroguanylin than adolescents without obesity have. METHODS We recruited 24 adolescents (age 14-17 years) with and without obesity (body mass index >95% or body mass index <95%) and measured plasma pro-uroguanylin at fasting and successive time points after a meal. We measured 3 other satiety hormones and 2 inflammatory markers to characterize overall satiety signaling and highlight any link between uroguanylin and inflammation. RESULTS Female adolescents with obesity had lower circulating pro-uroguanylin levels than female adolescents without obesity; we observed no difference in males. Other measured gastrointestinal peptides varied in their differences between cohorts. Inflammatory markers were higher in female participants with obesity. CONCLUSIONS In adolescents with and without obesity, we can measure circulating pro-uroguanylin levels. In female adolescents without obesity, levels are particularly higher. Pro-uroguanylin secretion patterns differ from other circulating gastrointestinal peptides. In female adolescents with obesity, inflammation correlates with decreased pro-uroguanylin levels.
Collapse
|
8
|
Di Guglielmo MD, Perdue L, Adeyemi A, van Golen KL, Corao DU. Immunohistochemical Staining for Uroguanylin, a Satiety Hormone, is Decreased in Intestinal Tissue Specimens From Female Adolescents With Obesity. Pediatr Dev Pathol 2018; 21:285-295. [PMID: 28847213 PMCID: PMC5647253 DOI: 10.1177/1093526617722912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastrointestinal tract-secreted satiety hormones play a significant role in one of the largest health-care challenges for children and adults, obesity. Recent studies in mice identified a novel role for uroguanylin, the endogenous intestinal hormone that binds guanylyl cyclase C (GUCY2C), in regulating satiety via a gut-brain signaling pathway. Mice bred without GUCY2C receptors over-ate and developed obesity. We hypothesized that intestinal uroguanylin expression in pediatric patients with obesity would be lower than patients without obesity, and we attempted to examine the difference with immunohistochemistry. Retrospective chart review of gastrointestinal endoscopic procedures at an academic children's hospital identified patients with normal pathology findings on biopsy. Children aged 8-17 were included in the review; we analyzed biopsy samples from 20 matched pairs that differed only by body mass index (BMI)-for-age (average: 25%-75% vs. high: >95%). Biopsies of the duodenum, terminal ileum, ascending colon, and descending colon were subjected to immunohistochemistry for GUCY2C, uroguanylin, and the endogenous colonic hormone, guanylin. Intensity staining of all specimens was scored by a blinded pathologist. The overall staining intensity for females with high BMI-for-age was less for uroguanylin and guanylin as compared to average BMI-for-age females while GUCY2C staining was equal. Males did not exhibit different staining intensities for uroguanylin or guanylin. More matched female pairs had greater uroguanylin and guanylin staining in the average BMI-for-age cohort. The intestinal expression of uroguanylin, a key satiety hormone, appears to be diminished in female pediatric patients in the setting of obesity.
Collapse
Affiliation(s)
- Matthew D Di Guglielmo
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Lacey Perdue
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Adebowale Adeyemi
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Kenneth L van Golen
- Department of Molecular Biosciences, University of Delaware, Newark, Delaware
| | - Diana U Corao
- Department of Pathology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
9
|
Friebe A, Sandner P, Schmidtko A. Meeting report of the 8 th International Conference on cGMP "cGMP: generators, effectors, and therapeutic implications" at Bamberg, Germany, from June 23 to 25, 2017. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1177-1188. [PMID: 29018913 PMCID: PMC5783999 DOI: 10.1007/s00210-017-1429-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented ( http://www.cyclicgmp.net/index.html ).
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Peter Sandner
- Drug Discovery, Bayer AG, Aprather Weg 18a, 42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Venniyoor A. The most important questions in cancer research and clinical oncology-Question 2-5. Obesity-related cancers: more questions than answers. CHINESE JOURNAL OF CANCER 2017; 36:18. [PMID: 28143590 PMCID: PMC5286818 DOI: 10.1186/s40880-017-0185-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Obesity is recognized as the second highest risk factor for cancer. The pathogenic mechanisms underlying tobacco-related cancers are well characterized and effective programs have led to a decline in smoking and related cancers, but there is a global epidemic of obesity without a clear understanding of how obesity causes cancer. Obesity is heterogeneous, and approximately 25% of obese individuals remain healthy (metabolically healthy obese, MHO), so which fat deposition (subcutaneous versus visceral, adipose versus ectopic) is "malignant"? What is the mechanism of carcinogenesis? Is it by metabolic dysregulation or chronic inflammation? Through which chemokines/genes/signaling pathways does adipose tissue influence carcinogenesis? Can selective inhibition of these pathways uncouple obesity from cancers? Do all obesity related cancers (ORCs) share a molecular signature? Are there common (over-lapping) genetic loci that make individuals susceptible to obesity, metabolic syndrome, and cancers? Can we identify precursor lesions of ORCs and will early intervention of high risk individuals alter the natural history? It appears unlikely that the obesity epidemic will be controlled anytime soon; answers to these questions will help to reduce the adverse effect of obesity on human condition.
Collapse
|