1
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
2
|
Wu Z, Ke Q, Jiang L, Hong H, Pan W, Chen W, Abudukeremu X, She F, Chen Y. TGF-β1 facilitates gallbladder carcinoma metastasis by regulating FOXA1 translation efficiency through m 6A modification. Cell Death Dis 2024; 15:422. [PMID: 38886389 PMCID: PMC11183149 DOI: 10.1038/s41419-024-06800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
TGF-β1 plays a pivotal role in the metastatic cascade of malignant neoplasms. N6-methyladenosine (m6A) stands as one of the most abundant modifications on the mRNA transcriptome. However, in the metastasis of gallbladder carcinoma (GBC), the effect of TGF-β1 with mRNA m6A modification, especially the effect of mRNA translation efficiency associated with m6A modification, remains poorly elucidated. Here we demonstrated a negative correlation between FOXA1 and TGF-β1 expression in GBC. Overexpression of FOXA1 inhibited TGF-β1-induced migration and epithelial-mesenchymal transition (EMT) in GBC cells. Mechanistically, we confirmed that TGF-β1 suppressed the translation efficiency of FOXA1 mRNA through polysome profiling analysis. Importantly, both in vivo and in vitro experiments showed that TGF-β1 promoted m6A modification on the coding sequence (CDS) region of FOXA1 mRNA, which was responsible for the inhibition of FOXA1 mRNA translation by TGF-β1. We demonstrated through MeRIP and RIP assays, dual-luciferase reporter assays and site-directed mutagenesis that ALKBH5 promoted FOXA1 protein expression by inhibiting m6A modification on the CDS region of FOXA1 mRNA. Moreover, TGF-β1 inhibited the binding capacity of ALKBH5 to the FOXA1 CDS region. Lastly, our study confirmed that overexpression of FOXA1 suppressed lung metastasis and EMT in a nude mice lung metastasis model. In summary, our research findings underscore the role of TGF-β1 in regulating TGF-β1/FOXA1-induced GBC EMT and metastasis by inhibiting FOXA1 translation efficiency through m6A modification.
Collapse
Affiliation(s)
- Zhenheng Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Qiming Ke
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Lei Jiang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
| | - Haijie Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
| | - Wei Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
| | - Wen Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
- Fujian Medical University Cancer Center, Fuzhou, Fujian, 350122, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
3
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
4
|
Nair R, Lannagan TRM, Jackstadt R, Andrusaite A, Cole J, Boyne C, Nibbs RJB, Sansom OJ, Milling S. Co-inhibition of TGF-β and PD-L1 pathways in a metastatic colorectal cancer mouse model triggers interferon responses, innate cells and T cells, alongside metabolic changes and tumor resistance. Oncoimmunology 2024; 13:2330194. [PMID: 38516270 PMCID: PMC10956632 DOI: 10.1080/2162402x.2024.2330194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-β1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-β1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-β inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-β and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.
Collapse
Affiliation(s)
- Reshmi Nair
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | | | - Anna Andrusaite
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - Caitlin Boyne
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simon Milling
- School of infection and immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Zhang H, Yang H, Liu XM, Ying J, Zu T, Jiang J, Liu MM, Jin J. Targeted inhibition of transforming growth factor-β type I receptor by AZ12601011 improves paraquat poisoning-induced multiple organ fibrosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105831. [PMID: 38582594 DOI: 10.1016/j.pestbp.2024.105831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-β1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFβRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1β, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-β and TGFβRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFβRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-β/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Hang Yang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xue-Mei Liu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ying
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tong Zu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing Jiang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Chen PY, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Front Mol Biosci 2023; 10:1113061. [PMID: 37325472 PMCID: PMC10267471 DOI: 10.3389/fmolb.2023.1113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is named for the function it was originally discovered to perform-transformation of normal cells into aggressively growing malignant cells. It became apparent after more than 30 years of research, however, that TGFβ is a multifaceted molecule with a myriad of different activities. TGFβs are widely expressed with almost every cell in the human body producing one or another TGFβ family member and expressing its receptors. Importantly, specific effects of this growth factor family differ in different cell types and under different physiologic and pathologic conditions. One of the more important and critical TGFβ activities is the regulation of cell fate, especially in the vasculature, that will be the focus of this review.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
da Silva RA, Roda VMDP, Akamine PS, da Silva DS, Siqueira PV, Matsuda M, Hamassaki DE. Blockade of the TGF-β pathway by galunisertib inhibits the glial-mesenchymal transition in Müller glial cells. Exp Eye Res 2023; 226:109336. [PMID: 36455675 DOI: 10.1016/j.exer.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Aging increases the risks for developing fibrocontractile membranes on the retina, which causes significant macular distortion, as in the idiopathic epiretinal membrane (iERM). Retinal Müller glial cells are components of these membranes and may play a key role in the iERM pathogenesis. The transforming growth factor-β (TGF-β) induces Müller cell transdifferentiation into myofibroblast, reducing glial cell markers (glutamine synthetase, GS, and glial fibrillary acidic protein, GFAP) and increasing α-smooth muscle actin (α-SMA). Our aim was to investigate the effect of the TGF-β inhibitor galunisertib (LY2157299) on the glial-mesenchymal transition and contraction of Müller cells. MIO-M1 human Müller cells were treated with TGF-β1 (10 ng/mL), galunisertib (5, 10 and 20 μM) and TGF-β1+galunisertib for 24h and 48h. Galunisertib cytotoxicity was analyzed by MTT and trypan blue, and TGF-β1 blockade by phospho-SMAD3 immunofluorescence. Caspase-3 (cell death indicator), GS, GFAP and α-SMA expression was examined by immunofluorescence, Western blotting, and qPCR analysis. Cell contractility was determined by collagen gel contraction assay with Müller cells incorporated. Galunisertib did not show cytotoxicity at the concentrations evaluated and maintained the Müller cells phenotype, ensuring the GS expression. Galunisertib inhibited the TGF-β1 pathway by decreasing phospho-SMAD3 immunoreactivity, attenuated the α-SMA expression, and prevented the contraction of Müller cells in collagen gel. Although more studies are needed, in vitro assays suggest that galunisertib may be a potential candidate to attenuate the formation of fibrocontractile membranes and prevent retinal detachment and consequent loss of vision.
Collapse
Affiliation(s)
- Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Priscilla Sayami Akamine
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela Simões da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Matsuda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
9
|
Flanagan DJ, Amirkhah R, Vincent DF, Gunduz N, Gentaz P, Cammareri P, McCooey AJ, McCorry AMB, Fisher NC, Davis HL, Ridgway RA, Lohuis J, Leach JDG, Jackstadt R, Gilroy K, Mariella E, Nixon C, Clark W, Hedley A, Markert EK, Strathdee D, Bartholin L, Redmond KL, Kerr EM, Longley DB, Ginty F, Cho S, Coleman HG, Loughrey MB, Bardelli A, Maughan TS, Campbell AD, Lawler M, Leedham SJ, Barry ST, Inman GJ, van Rheenen J, Dunne PD, Sansom OJ. Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features. Nat Commun 2022; 13:7551. [PMID: 36477656 PMCID: PMC9729215 DOI: 10.1038/s41467-022-35134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The pro-tumourigenic role of epithelial TGFβ signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFβ signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFβ signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFβ signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFβ signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Raheleh Amirkhah
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Nuray Gunduz
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Aoife J McCooey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy M B McCorry
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Hayley L Davis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jeroen Lohuis
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Elisa Mariella
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
- University of Newcastle upon Tyne, Newcastle, UK
| | - Elke K Markert
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Keara L Redmond
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma M Kerr
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE Global Research Center, Niskayuna, NY, USA
| | - Sanghee Cho
- GE Global Research Center, Niskayuna, NY, USA
| | - Helen G Coleman
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Mark Lawler
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon J Leedham
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip D Dunne
- Cancer Research UK Beatson Institute, Glasgow, UK
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
11
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
12
|
Suo XG, Wang F, Xu CH, He XY, Wang JN, Zhang Y, Ni WJ, Lu H, Ji ML, He Y, Xie SS, Yang YR, Wen JG, Jin J, Gong Q, Li J, Liu MM, Meng XM. Targeted inhibition of TGF-β type I receptor by AZ12601011 protects against kidney fibrosis. Eur J Pharmacol 2022; 929:175116. [PMID: 35780825 DOI: 10.1016/j.ejphar.2022.175116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Renal fibrosis, a common feature of chronic kidney disease, causes the progressive loss of renal function, in which TGF-β1 plays a critical role. In this study, we found that expression levels of TGF-β1 and its receptor 1 (TGF-βR1) were both significantly increased in obstructive fibrosis kidneys. AZ12601011 is a small molecular inhibitor of TGF-βR1; however, its therapeutic potential for renal fibrosis remains unclear. During the experiments, AZ12601011 was applied to various models of renal fibrosis followed by unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R) in vivo, in addition to renal tubular epithelial cells (TECs) challenged by hypoxia/reoxygenation (H/R) and TGF-β1in vitro. Our results revealed that AZ12601011 ameliorated renal injuries and fibrosis shown by PAS, HE, and Masson staining, which was consistent with the decrease in Col-1 and α-SMA expression in the kidneys from UUO and I/R mice. Similarly, in vitro data showed that AZ12601011 inhibited the induction of Col-1 and α-SMA in both TECs treated with TGF-β1 and H/R. In addition, the results of cellular thermal shift assay (CETSA), molecular docking, and western bolt indicated that AZ12601011 could directly bind to TGF-βR1 and block activation of the downstream Smad3. Taken together, our findings suggest that AZ12601011 can attenuate renal fibrosis by blocking the TGF-β/Smad3 signaling pathway and it might serve as a promising clinical candidate in the fight against fibrotic kidney diseases.
Collapse
Affiliation(s)
- Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China; Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237006, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ya-Ru Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
13
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
Affiliation(s)
- Farhana Mollah
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pegah Varamini
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Dayal JHS, Mason SM, Salas-Alanis JC, McGrath JA, Taylor RG, Mellerio JE, Blyth K, South AP, Inman GJ. Heterogeneous addiction to transforming growth factor-beta signalling in recessive dystrophic epidermolysis bullosa-associated cutaneous squamous cell carcinoma. Br J Dermatol 2021; 184:697-708. [PMID: 32726455 DOI: 10.1111/bjd.19421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is associated with a high mortality rate due to the development of life-threatening, metastatic cutaneous squamous cell carcinoma (cSCC). Elevated transforming growth factor-beta (TGF-β) signalling is implicated in cSCC development and progression in patients with RDEB. OBJECTIVES To determine the effect of exogenous and endogenous TGF-β signalling in RDEB cSCC with a view to assessing the potential of targeting TGF-β signalling for RDEB cSCC therapy. METHODS A panel of 11 patient-derived RDEB cSCC primary tumour keratinocyte cell lines (SCCRDEBs) were tested for their signalling and proliferation responses to exogenous TGF-β. Their responses to TGF-β receptor type-1 (TGFBR1) kinase inhibitors [SB-431542 and AZ12601011 (AZA01)] were tested using in vitro proliferation, clonogenicity, migration and three-dimensional invasion assays, and in vivo tumour xenograft assays. RESULTS All SCCRDEBs responded to exogenous TGF-β by activation of canonical SMAD signalling and proliferative arrest. Blocking endogenous signalling by treatment with SB-431542 and AZ12601011 significantly inhibited proliferation (seven of 11), clonogenicity (six of 11), migration (eight of 11) and invasion (six of 11) of SCCRDEBs. However, these TGFBR1 kinase inhibitors also promoted proliferation and clonogenicity in two of 11 SCCRDEB cell lines. Pretreatment of in vitro TGFBR1-addicted SCCRDEB70 cells with SB-431542 enhanced overall survival and reduced tumour volume in subcutaneous xenografts but had no effect on nonaddicted SCCRDEB2 cells in these assays. CONCLUSIONS Targeting TGFBR1 kinase activity may have therapeutic benefit in the majority of RDEB cSCCs. However, the potential tumour suppressive role of TGF-β signalling in a subset of RDEB cSCCs necessitates biomarker identification to enable patient stratification before clinical intervention.
Collapse
Affiliation(s)
- J H S Dayal
- Cancer Research UK Beatson Institute, Glasgow, UK
- Division of Cancer Research, Ninewells Hospital and Medical School, Jacqui Wood Cancer Centre, University of Dundee, Dundee, UK
| | - S M Mason
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - J C Salas-Alanis
- Department of Basic Sciences, Health Sciences Division, Universidad de Monterrey, Guadalupe, Nuevo León, México
| | - J A McGrath
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - R G Taylor
- Division of Cancer Research, Ninewells Hospital and Medical School, Jacqui Wood Cancer Centre, University of Dundee, Dundee, UK
| | - J E Mellerio
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - K Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - A P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - G J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Division of Cancer Research, Ninewells Hospital and Medical School, Jacqui Wood Cancer Centre, University of Dundee, Dundee, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12092652. [PMID: 32957515 PMCID: PMC7564346 DOI: 10.3390/cancers12092652] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are key players in the tumor microenvironment. They are responsible for potentiating growth and metastasis through versatile functions, including maintenance of the extracellular matrix, blood vessel formation, modulation of tumor metabolism, suppression of antitumor immunity, and promotion of chemotherapy resistance. As such, CAFs are associated with poor prognosis and have emerged as a focus of anticancer research. In this review, we discuss the origins of CAFs, their heterogenous subtypes and their properties. We then detail the current state of preclinical and clinical research targeting CAF activities. We believe the limited efficacy of current cancer therapeutic approaches is driven by an incomplete understanding of CAF functions and by a nonstandardized CAF classification system. Therefore, we suggest a unified CAF classification based on specific functions to develop a new class of therapies that will focus on targeting the pro-tumorigenic properties of CAFs during tumor progression. Abstract Cancer-associated fibroblasts (CAFs) are indispensable architects of the tumor microenvironment. They perform the essential functions of extracellular matrix deposition, stromal remodeling, tumor vasculature modulation, modification of tumor metabolism, and participation in crosstalk between cancer and immune cells. In this review, we discuss our current understanding of the principal differences between normal fibroblasts and CAFs, the origin of CAFs, their functions, and ultimately, highlight the intimate connection of CAFs to virtually all of the hallmarks of cancer. We address the remarkable degree of functional diversity and phenotypic plasticity displayed by CAFs and strive to stratify CAF biology among different tumor types into practical functional groups. Finally, we summarize the status of recent and ongoing trials of CAF-directed therapies and contend that the paucity of trials resulting in Food and Drug Administration (FDA) approvals thus far is a consequence of the failure to identify targets exclusive of pro-tumorigenic CAF phenotypes that are mechanistically linked to specific CAF functions. We believe that the development of a unified CAF nomenclature, the standardization of functional assays to assess the loss-of-function of CAF properties, and the establishment of rigorous definitions of CAF subpopulations and their mechanistic functions in cancer progression will be crucial to fully realize the promise of CAF-targeted therapies.
Collapse
|
18
|
Xu G, Zhang Y, Wang H, Guo Z, Wang X, Li X, Chang S, Sun T, Yu Z, Xu T, Zhao L, Wang Y, Yu W. Synthesis and biological evaluation of 4-(pyridin-4-oxy)-3-(3,3-difluorocyclobutyl)-pyrazole derivatives as novel potent transforming growth factor-β type 1 receptor inhibitors. Eur J Med Chem 2020; 198:112354. [PMID: 32387837 DOI: 10.1016/j.ejmech.2020.112354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 01/24/2023]
Abstract
Inhibition of transforming growth factor β (TGF-β) type 1 receptor (ALK5) provides a feasible approach for the treatment of fibrotic diseases and malignant tumors. In this study, we designed and synthesized a new series of 4-(pyridin-4-oxy)-3-(3,3-difluorocyclobutyl)-pyrazole derivatives, and evaluated biologically as TGF-β type 1 receptor inhibitors. The most potent compound 15r inhibited the ALK5 enzyme and NIH3T3 cell viability with IC50 values of 44 and 42.5 nM, respectively. Compound 15r also displayed better oral plasma exposure and excellent bioavailability than LY-3200882, and in vivo inhibited 65.7% of the tumor growth in a CT26 xenograft mouse model.
Collapse
Affiliation(s)
- Guofeng Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China; Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Yan Zhang
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Hai Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Zhuang Guo
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Xiaowei Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Xue Li
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Shaohua Chang
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Tianwen Sun
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Zhuangzhuang Yu
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Tianwei Xu
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China.
| | - Yazhou Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd, No. 99, West Yunlianghe Road, Jiangning District, Nanjing, 210049, People's Republic of China.
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
19
|
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. [PMID: 32038612 PMCID: PMC6985149 DOI: 10.3389/fimmu.2019.03038] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are a population of innate lymphoid cells playing a pivotal role in host immune responses against infection and tumor growth. These cells have a powerful cytotoxic activity orchestrated by an intricate network of inhibitory and activating signals. The importance of NK cells in controlling tumor growth and in mediating a robust anti-metastatic effect has been demonstrated in different experimental mouse cancer models. Consistently, high density of tumor-infiltrating NK cells has been linked with a good prognosis in multiple human solid tumors. However, there are also tumors that appear to be refractory to NK cell-mediated killing for the presence of an immunosuppressive microenvironment affecting NK cell function. Immunotherapeutic strategies aimed at restoring and increasing the cytotoxic activity of NK cells in solid tumors, including the adoptive transfer of NK and CAR-NK cells, are currently employed in preclinical and clinical studies. In this review, we outline recent advances supporting the direct role of NK cells in controlling expansion of solid tumors and their prognostic value in human cancers. We summarize the mechanisms adopted by cancer cells and the tumor microenvironment to affect NK cell function, and finally we evaluate current strategies to augment the antitumor function of NK cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Lucarini
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
20
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1405] [Impact Index Per Article: 281.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
21
|
Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF- β1/Smad3 and TGF- β1/p38 MAPK Pathways. Mediators Inflamm 2019; 2019:6175091. [PMID: 31467486 PMCID: PMC6701280 DOI: 10.1155/2019/6175091] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/25/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Liver fibrosis is a consequence of wound-healing responses to chronic liver insult and may progress to liver cirrhosis if not controlled. This study investigated the protection against liver fibrosis by isorhamnetin. Methods Mouse models of hepatic fibrosis were established by intraperitoneal injection of carbon tetrachloride (CCl4) or bile duct ligation (BDL). Isorhamnetin 10 or 30 mg/kg was administered by gavage 5 days per week for 8 weeks in the CCl4 model and for 2 weeks in the BDL model. Protein and mRNA expressions were assayed by western blotting, immunohistochemistry, and quantitative real-time polymerase chain reaction. Results Isorhamnetin significantly inhibited liver fibrosis in both models, inhibiting hepatic stellate cell (HSC) activation, extracellular matrix (ECM) deposition, and autophagy. The effects were associated with downregulation of transforming growth factor β1 (TGF-β1) mediation of Smad3 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Conclusion Isorhamnetin protected against liver fibrosis by reducing ECM formation and autophagy via inhibition of TGF-β1-mediated Smad3 and p38 MAPK signaling pathways.
Collapse
|
22
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|