1
|
Yang D, Jeong H, Kim MS, Oh SI, Lee K, Kim JW, Kim B. Prenatal cigarette smoke exposure sensitizes acetaminophen-induced liver injury by modulating miR-34a-5p in male offspring mice. Front Cell Dev Biol 2024; 12:1393618. [PMID: 39139452 PMCID: PMC11319911 DOI: 10.3389/fcell.2024.1393618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: Cigarette smoke (CS) exacerbates the severity of diseases not only in lungs, but also in systemic organs having no direct contact with smoke. In addition, smoking during pregnancy can have severe health consequences for both the mother and the fetus. Therefore, our aim was to evaluate effects of prenatal exposure to CS on acetaminophen (APAP)-induced acute liver injury (ALI) in offspring. Methods: Female C57BL/6 mice on day 6 of gestation were exposed to mainstream CS (MSCS) at 0, 150, 300, or 600 μg/L for 2 h a day, 5 days a week for 2 weeks using a nose-only exposure system. At four weeks old, male offspring mice were injected intraperitoneally with a single dose of APAP at 300 mg/kg body weight to induce ALI. Results: Maternal MSCS exposure significantly amplified pathological effects associated with ALI as evidenced by elevated serum alanine aminotransferase levels, increased hepatocellular apoptosis, higher oxidative stress, and increased inflammation. Interestingly, maternal MSCS exposure reduced microRNA (miR)-34a-5p expression in livers of offspring. Moreover, treatment with a miR-34a-5p mimic significantly mitigated the severity of APAP-induced hepatotoxicity. Overexpression of miR-34a-5p completely abrogated adverse effects of maternal MSCS exposure in offspring with ALI. Mechanistically, miR-34a-5p significantly decreased expression levels of hepatocyte nuclear factor 4 alpha, leading to down-regulated expression of cytochrome P450 (CYP)1A2 and CYP3A11. Discussion: Prenatal exposure to MSCS can alter the expression of miRNAs, even in the absence of additional MSCS exposure, potentially increasing susceptibility to APAP exposure in male offspring mice.
Collapse
Affiliation(s)
- Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Xu Y, Xia Y, Liu Q, Jing X, Tang Q, Zhang J, Jia Q, Zhang Z, Li J, Chen J, Xiong Y, Li Y, He J. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites. J Pharm Anal 2023; 13:1548-1561. [PMID: 38223455 PMCID: PMC10785153 DOI: 10.1016/j.jpha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 01/16/2024] Open
Abstract
Excessive N-acetyl-p-benzoquinone imine (NAPQI) formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen (APAP) overdose caused acute liver failure (ALF). S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity. Glutaredoxin-1 (Glrx1), a glutathione-specific thioltransferase, is a primary enzyme to catalyze deglutathionylation. The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP. The Glrx1 knockout mice (Glrx1-/-) and liver-specific overexpression of Glrx1 (AAV8-Glrx1) mice were produced and underwent APAP-induced ALF. Pirfenidone (PFD), a potential inducer of Glrx1, was administrated preceding APAP to assess its protective effects. Our results revealed that the hepatic total protein S-glutathionylation (PSSG) increased and the Glrx1 level reduced in mice after APAP toxicity. Glrx1-/- mice were more sensitive to APAP overdose, with higher oxidative stress and more toxic metabolites of APAP. This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p450 3a11 (Cyp3a11), which likely increased the activity of Cyp3a11. Conversely, AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11, which reduced the toxic metabolites of APAP and oxidative stress. PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress. We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose. Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.
Collapse
Affiliation(s)
| | | | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Yang Y, Ju C. Sulfation in Acetaminophen-Induced Liver Injury: Friend or Foe? Gastroenterology 2022; 162:1035-1037. [PMID: 35120917 DOI: 10.1053/j.gastro.2022.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
5
|
Xu P, Xi Y, Wang P, Luka Z, Xu M, Tung HC, Wang J, Ren S, Feng D, Gao B, Singhi AD, Monga SP, York JD, Ma X, Huang Z, Xie W. Inhibition of p53 Sulfoconjugation Prevents Oxidative Hepatotoxicity and Acute Liver Failure. Gastroenterology 2022; 162:1226-1241. [PMID: 34954226 PMCID: PMC8934304 DOI: 10.1053/j.gastro.2021.12.260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Aatur D. Singhi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John D. York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Sanchez LD, Pontini L, Marinozzi M, Sanchez-Aranguren LC, Reis A, Dias IHK. Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges. Br J Pharmacol 2020; 178:3327-3341. [PMID: 32762060 DOI: 10.1111/bph.15227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
| | - Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
7
|
Xie Y, Xie W. The Role of Sulfotransferases in Liver Diseases. Drug Metab Dispos 2020; 48:742-749. [PMID: 32587100 PMCID: PMC7469250 DOI: 10.1124/dmd.120.000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes that catalyze the transfer of a sulfonate group from the universal sulfate donor 3'-phosphoadenosine-5'-phosphosulfate to a nucleophilic group of their substrates to generate hydrophilic products. Sulfation has a major effect on the chemical and functional homeostasis of substrate chemicals. SULTs are widely expressed in metabolically active or hormonally responsive tissues, including the liver and many extrahepatic tissues. The expression of SULTs exhibits isoform-, tissue-, sex-, and development-specific regulations. SULTs display a broad range of substrates including xenobiotics and endobiotics. The expression of SULTs has been shown to be transcriptionally regulated by members of the nuclear receptor superfamily, such as the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, estrogen-related receptors, and hepatocyte nuclear factor 4α These nuclear receptors can be activated by numerous xenobiotics and endobiotics, such as fatty acids, bile acids, and oxysterols, many of which are substrates of SULTs. Due to their metabolism of xenobiotics and endobiotics, SULTs and their regulations are implicated in the pathogenesis of many diseases. This review is aimed to summarize the central role of major SULTs, including the SULT1 and SULT2 subfamilies, in the pathophysiology of liver and liver-related diseases. SIGNIFICANCE STATEMENT: Sulfotransferases (SULTs) are indispensable in the homeostasis of xenobiotics and endobiotics. Knowing SULTs and their regulations are implicated in human diseases, it is hoped that genetic or pharmacological manipulations of the expression and/or activity of SULTs can be used to affect the clinical outcome of diseases.
Collapse
Affiliation(s)
- Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (Y.X., W.X.) and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (W.X.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (Y.X., W.X.) and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (W.X.)
| |
Collapse
|