1
|
Wang X, Carvajal-Moreno J, Zhao X, Li J, Hernandez VA, Yalowich JC, Elton TS. Circumvention of Topoisomerase II α Intron 19 Intronic Polyadenylation in Acquired Etoposide-Resistant Human Leukemia K562 Cells. Mol Pharmacol 2024; 106:33-46. [PMID: 38719474 PMCID: PMC11187689 DOI: 10.1124/molpharm.124.000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024] Open
Abstract
DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.
Collapse
Affiliation(s)
- Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Xinyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Chang Q, Li C, Hu J, Geng R. Protective effects of hsa_circ_0072568 on interleukin‑1β‑stimulated human chondrocytes are mediated via the miR‑382‑5p/TOP1 axis. Exp Ther Med 2023; 26:383. [PMID: 37456162 PMCID: PMC10347372 DOI: 10.3892/etm.2023.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Circular RNA (circRNA) dysregulation has been linked to osteoarthritis (OA). The present study investigated the involvement of hsa_circ_0072568 (circ0072568) in OA. The expression of circ0072568 was detected in OA tissues and interleukin (IL)-1β-stimulated human chondrocytes. After performing dual-luciferase reporter and RNA immunoprecipitation assays, MTT, enzyme-linked immunosorbent assay and western blot analysis were used to assess the functions of circ0072568 in IL-1β-induced inflammation in chondrocytes in vitro. Circ0072568 was inhibited in OA tissues and the cell model in vitro. Circ0072568 overexpression protected the chondrocytes against IL-1β-induced inflammation and extracellular matrix (ECM) breakdown. Circ0072568 directly attached to microRNA (miR)-382-5p and enhanced the production of topoisomerase 1 (TOP1). Furthermore, miR-382-5p overexpression or TOP1 knockdown attenuated the effects of circ0072568 in IL-1β-stimulated human chondrocytes. On the whole, the present study demonstrates that the Circ0072568/miR-382-5p/TOP1 axis is involved in inflammation and ECM degradation in OA. These findings may contribute to the development of potential therapeutic strategies for OA.
Collapse
Affiliation(s)
- Qing Chang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chao Li
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Junzheng Hu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rui Geng
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
3
|
Heryanto YD, Imoto S. Identifying Key Regulators of Keratinization in Lung Squamous Cell Cancer Using Integrated TCGA Analysis. Cancers (Basel) 2023; 15:cancers15072066. [PMID: 37046726 PMCID: PMC10092975 DOI: 10.3390/cancers15072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Keratinization is one of lung squamous cell cancer’s (LUSC) hallmark histopathology features. Epithelial cells produce keratin to protect their integrity from external harmful substances. In addition to their roles as cell protectors, recent studies have shown that keratins have important roles in regulating either normal cell or tumor cell functions. The objective of this study is to identify the genes and microRNAs (miRNAs) that act as key regulators of the keratinization process in LUSC. To address this goal, we classified LUSC samples from GDC-TCGA databases based on their keratinization molecular signatures. Then, we performed differential analyses of genes, methylation, and miRNA expression between high keratinization and low keratinization samples. By reconstruction and analysis of the differentially expressed genes (DEGs) network, we found that TP63 and SOX2 were the hub genes that were highly connected to other genes and displayed significant correlations with several keratin genes. Methylation analysis showed that the P63, P73, and P53 DNA-binding motif sites were significantly enriched for differentially methylated probes. We identified SNAI2, GRHL3, TP63, ZNF750, and FOXE1 as the top transcription factors associated with these binding sites. Finally, we identified 12 miRNAs that influence the keratinization process by using miRNA–mRNA correlation analysis.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence:
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Carvajal-Moreno J, Hernandez VA, Wang X, Li J, Yalowich JC, Elton TS. Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase II β Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. J Pharmacol Exp Ther 2023; 384:265-276. [PMID: 36410793 PMCID: PMC9875313 DOI: 10.1124/jpet.122.001429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α/170; 170 kDa) and topoisomerase IIβ (TOP2β/180; 180 kDa) are targets for a number of anticancer drugs, whose clinical efficacy is attenuated by chemoresistance. Our laboratory selected for an etoposide-resistant K562 clonal subline designated K/VP.5. These cells exhibited decreased TOP2α/170 and TOP2β/180 expression. We previously demonstrated that a microRNA-9 (miR-9)-mediated posttranscriptional mechanism plays a role in drug resistance via reduced TOP2α/170 protein in K/VP.5 cells. Here, it is hypothesized that a similar miR-9 mechanism is responsible for decreased TOP2β/180 levels in K/VP.5 cells. Both miR-9-3p and miR-9-5p are overexpressed in K/VP.5 compared with K562 cells, demonstrated by microRNA (miRNA) sequencing and quantitative polymerase chain reaction. The 3'-untranslated region (3'-UTR) of TOP2β/180 contains miRNA recognition elements (MRE) for both miRNAs. Cotransfection of K562 cells with a luciferase reporter plasmid harboring TOP2β/180 3'-UTR plus miR-9-3p or miR-9-5p mimics resulted in statistically significant decreased luciferase expression. miR-9-3p and miR-9-5p MRE mutations prevented this decrease, validating direct interaction between these miRNAs and TOP2β/180 mRNA. Transfection of K562 cells with miR-9-3p/5p mimics led to decreased TOP2β protein levels without a change in TOP2β/180 mRNA and resulted in reduced TOP2β-specific XK469-induced DNA damage. Conversely, K/VP.5 cells transfected with miR-9-3p/5p inhibitors led to increased TOP2β/180 protein without a change in TOP2β/180 mRNA and resulted in enhancement of XK469-induced DNA damage. Taken together, these results strongly suggest that TOP2β/180 mRNA is translationally repressed by miR-9-3p/5p, that these miRNAs play a role in acquired resistance to etoposide, and that they are potential targets for circumvention of resistance to TOP2-targeted agents. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p play a role in acquired resistance to etoposide via decreased DNA topoisomerase IIβ 180 kDa protein levels. These findings contribute further information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. In addition, miR-9-3p and miR-9-5p overexpression in cancer chemoresistance may lead to future validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Liang L, Chen L, Liu G, Jiang L, Que L, Chen J, Wang R, Zhu H. Thalidomide attenuates oral epithelial cell apoptosis and pro-inflammatory cytokines secretion induced by radiotherapy via the miR-9-3p/NFATC2/NF-κB axis. Biochem Biophys Res Commun 2022; 603:102-108. [DOI: 10.1016/j.bbrc.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
|
6
|
A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation. Sci Rep 2022; 12:2834. [PMID: 35181712 PMCID: PMC8857176 DOI: 10.1038/s41598-022-06876-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called isomiRs, which may have alternative regulatory functions. Despite the recent development of several single cell small RNA sequencing protocols, these methods have not been leveraged to investigate isomiR expression and regulation to better understand their role on a single cell level. Here we integrate sequencing data from three independent studies and find substantial differences in isomiR composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also find evidence of altered regulatory functions of different classes of isomiRs, when compared to their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are expressed.
Collapse
|
7
|
Shi X, Gao GY, Shen J. Identification of microRNA Signature and Key Genes Between Adenoma and Adenocarcinomas Using Bioinformatics Analysis. Onco Targets Ther 2021; 14:4707-4720. [PMID: 34511938 PMCID: PMC8427077 DOI: 10.2147/ott.s320469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background In worldwide, colorectal cancer (CRC) is very common and the mechanisms remain unclear. This study aims to identify between adenomas with epithelial dislocation (false invasion) and adenomas with early adenocarcinoma (true invasion). Methods GSE41655 and GSE57965 datasets were obtained in the Gene Expression Omnibus (GEO) database. microRNA expression profiles and clinicopathological data from the TCGA (The Cancer Genome Atlas) database were downloaded to further validate the results in GEO. GEO software and the GEO2R calculation method were used to analyze two gene profiles. The co-expression of differentially expressed microRNAs (DEMs) and genes (DEGs) were identified and searched in the FunRich databases for pathway and ontology analysis. Cytoscape was utilized to construct the mRNA-microRNA network. Validation of gene expression levels was conducted by online databases and qRT-PCR and IHC experiments. Results In total, 6 DEMs and 34 DEGs are selected after calculating. KEGG results indicated that genes are enriched in certain tumor associated pathways. Four out of 6 microRNAs had a significant relationship with the overall survival (P < 0.05) and showed a good performance in predicting the survival risk of patients with colorectal carcinoma. Furthermore, expression levels of hsa-miR-455 and hsa-miR-125a were then verified by qRT-PCR which all target BCL2L12. IHC results showed that the expression level of BCL2L12 was higher in adenocarcinoma than in adenoma. Based on the selected gene, the top 10 small molecules were screened out as potential drugs. Conclusion By using microarray and bioinformatics analyses, DEMs and DEGs were selected and a complete gene network was constructed. To our knowledge, BCL2L12 and related molecules including hsa-miR-455 and hsa-miR-125a were firstly identified as potential biomarkers in the progression from adenoma to adenocarcinoma.
Collapse
Affiliation(s)
- Xinya Shi
- Department of Oncology, Changshu Second People's Hospital, Suzhou, 215004, People's Republic of China
| | - Guang Yu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Jiaofeng Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| |
Collapse
|
8
|
Wang X, Gao G, Chen Z, Chen Z, Han M, Xie X, Jin Q, Du H, Cao Z, Zhang H. Identification of the miRNA signature and key genes in colorectal cancer lymph node metastasis. Cancer Cell Int 2021; 21:358. [PMID: 34315491 PMCID: PMC8314594 DOI: 10.1186/s12935-021-02058-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/27/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Because its metastasis to the lymph nodes are closely related to poor prognosis, miRNAs and mRNAs can serve as biomarkers for the diagnosis, prognosis, and therapy of colorectal cancer (CRC). This study aimed to identify novel gene signatures in the lymph node metastasis of CRC. METHODS GSE56350, GSE70574, and GSE95109 datasets were downloaded from the Gene Expression Omnibus (GEO) database, while data from 569 colorectal cancer cases were also downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs (DE-miRNAs) were calculated using R programming language (Version 3.6.3), while gene ontology and enrichment analysis of target mRNAs were performed using FunRich ( http://www.funrich.org ). Furthermore, the mRNA-miRNA network was constructed using Cytoscape software (Version 3.8.0). Gene expression levels were verified using the GEO datasets. Similarly, quantitative real-time PCR (qPCR) was used to examine expression profiles from 20 paired non-metastatic and metastatic lymph node tissue samples obtained from patients with CRC. RESULTS In total, five DE-miRNAs were selected, and 34 mRNAs were identified after filtering the results. Moreover, two key miRNAs (hsa-miR-99a, hsa-miR-100) and one gene (heparan sulfate-glucosamine 3-sulfotransferase 2 [HS3ST2]) were identified. The GEO datasets analysis and qPCR results showed that the expression of key miRNA and genes were consistent with that obtained from the bioinformatic analysis. A novel miRNA-mRNA network capable of predicting the prognosis and confirmed experimentally, hsa-miR-99a-HS3ST2-hsa-miR-100, was found after expression analysis in metastasized lymph node tissue from CRC samples. CONCLUSION In summary, miRNAs and genes with potential as biomarkers were found and a novel miRNA-mRNA network was established for CRC lymph node metastasis by systematic bioinformatic analysis and experimental validation. This network may be used as a potential biomarker in the development of lymph node metastatic CRC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China
| | - Xiaolu Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China
| | - Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China.
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, No. 1055 San Xiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
9
|
Gao G, Shi X, Shen J. HS3ST2 and Its Related Molecules as Potential Biomarkers for Predicting Lymph Node Metastasis in Patients with Colorectal Cancer. Onco Targets Ther 2021; 14:3881-3894. [PMID: 34234457 PMCID: PMC8242151 DOI: 10.2147/ott.s311038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Background Lymph node metastasis is a major cause of cancer-related death in patients with colorectal cancer (CRC), but current strategies are limited to predicting this clinical behavior. Our study aims to establish a lymph node metastasis prediction model based on miRNA and mRNA to improve the accuracy of prediction. Methods GSE56350, GSE70574, and GSE95109 were downloaded from the Gene Expression Omnibus (GEO) database and 569 colorectal cancer statistics were also downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs were calculated by using R software. Besides, gene ontology and enriched pathway analysis of target mRNAs were analyzed by using FunRich. Furthermore, the mRNA–miRNA network was constructed using Cytoscape software. Gene expression level was also detected by performing qRT-PCR (quantitative real-time PCR) in colorectal cancer and lymph node tissues. Results In total, 5 differentially expressed miRNAs were selected, and 34 mRNAs were identified after filtering. The research of KEGG indicated that mRNAs are enriched in many cancer pathways. Differentially expressed miRNAs were most enriched in the cytoplasm, nucleoside, transcription factor activity, and RNA binding. KEGG pathway analysis of these target genes was mainly enriched in 5 pathways including fatty acid elongation, MAPK signaling pathway, autophagy, signaling pathways regulating pluripotency of stem cells, and Th17 cell differentiation. The results of qRT-PCR indicated that hsa-miR-100 and hsa-miR-99a were differentially expressed in lymph node metastatic colorectal cancer tissues and lymph node non-metastasis tissues which all target HS3ST2. Besides, we also found they have a significant difference in colorectal cancer tissues compared with normal tissues. Conclusion By using microarray and bioinformatics analyses, differentially expressed miRNAs were identified and a complete gene network was constructed. To our knowledge, HS3ST2 and related molecules including hsa-miR-100 and hsa-miR-99a were firstly identified as potential biomarkers in the development of lymph node metastatic colorectal cancer.
Collapse
Affiliation(s)
- Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xinya Shi
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jiaofeng Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
11
|
Cai H, Shao B, Zhou Y, Chen Z. High expression of TOP2A in hepatocellular carcinoma is associated with disease progression and poor prognosis. Oncol Lett 2020; 20:232. [PMID: 32968454 PMCID: PMC7500035 DOI: 10.3892/ol.2020.12095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor in the clinic. Although there are increasing numbers of available treatment methods, their therapeutic effects are not satisfactory. The clinical indicators commonly used to predict the prognosis of HCC include tumor size, degree of cirrhosis, degree of tumor differentiation and tumor microvascular invasion; however, there are currently no molecular indicators that can predict the prognosis of HCC. Due to the differences in the progression of liver cancer among individuals, there is a growing need for prognostic biomarkers to accurately stratify patients for appropriate risk-adaptive treatment. The DNA topoisomerase 2-α (TOP2A) gene, which is located on human chromosome 17, encodes DNA topoisomerase IIα. Previous studies have demonstrated that TOP2A indicates a poor prognosis in patients with various types of tumors, but no such studies are currently available on HCC. By analyzing the differential expression of TOP2A in 50 pairs of tumor and paracancerous tissue samples in The Cancer Genome Atlas (TCGA) database, the present study revealed that the expression of TOP2A was significantly higher in tumor tissue compared with that in paracancerous tissue (P=6.319×10-16). In the collected clinical samples, the mRNA expression levels of TOP2A were significantly upregulated in HCC tumor tissues compared with those in the paracancerous tissues (P=6.40×10-3), suggesting that TOP2A was associated with the occurrence and development of liver cancer. In addition, the associations between TOP2A expression, clinicopathological features and prognosis were analyzed using a multi-center large sample dataset from TCGA database, and the results demonstrated that high expression of TOP2A was associated with a higher T stage, poorer clinical stage and higher histological grade compared with those in patients with low TOP2A expression. High expression of TOP2A was also identified to be associated with a poor prognosis of HCC, particularly in Asian populations. These results suggested that high expression of TOP2A in HCC tissues may be closely associated with tumor progression and metastasis, which may be used as a biological indicator to predict tumor prognosis in clinical practice.
Collapse
Affiliation(s)
- Hongyu Cai
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Bingfeng Shao
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Zhong Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
12
|
Wang Y, Wang X, Jiang Y, Liu R, Cao D, Pan J, Luo Y. Identification of key miRNAs and genes for mouse retinal development using a linear model. Mol Med Rep 2020; 22:494-506. [PMID: 32319662 PMCID: PMC7248464 DOI: 10.3892/mmr.2020.11082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are upstream regulators of gene expression and are involved in several biological processes. The purpose of the present study was to obtain a detailed spatiotemporal miRNA expression profile in mouse retina, to identify one or more miRNAs that are key to mouse retinal development and to investigate the roles and mechanisms of these miRNAs. The miRNA expression pattern of the developing mouse retina was acquired from Locked Nucleic Acid microarrays. Data were processed to identify differentially expressed miRNAs (DE‑miRNAs) using the linear model in Python 3.6. Following bioinformatics analysis and reverse transcription‑quantitative polymerase chain reaction validation, 8 miRNAs (miR‑9‑5p, miR‑130a‑3p, miR‑92a‑3p, miR‑20a‑5p, miR‑93‑5p, miR‑9‑3p, miR‑709 and miR‑124) were identified as key DE‑miRNAs with low variability during mouse retinal development. Gene Ontology analysis revealed that the target genes of the DE‑miRNAs were enriched in cellular metabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the target genes of the DE‑miRNAs were significantly enriched in PI3K/AKT/mTOR, class O of forkhead box transcription factors, mitogen‑activated protein kinase (MAPK), neurotrophin and transforming growth factor (TGF)‑β signaling, as well as focal adhesion and the axon guidance pathway. PI3K, AKT, PTEN, MAPK1, Son of Sevenless, sphingosine‑1‑phosphate receptor 1, BCL‑2L11, TGF‑β receptor type 1/2 and integrin α (ITGA)/ITGAB, which are key components of the aforementioned pathways and were revealed to be target genes of several of the DE‑miRNAs. The present study used a linear model to identify several DE‑miRNAs, as well as their target genes and associated pathways, which may serve crucial roles in mouse retinal development. Therefore, the results obtained in the present study may provide the groundwork for further experiments.
Collapse
Affiliation(s)
- Yishen Wang
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yukang Jiang
- Department of Statistical Science, School of Mathematics, Southern China Research Center of Statistical Science, Sun Yat‑Sen University, Guangzhou, Guangdong 51027, P.R. China
| | - Ruyuan Liu
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Di Cao
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|