1
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
2
|
Sánchez-Sanz A, Posada-Ayala M, Sabín-Muñoz J, Fernández-Miranda I, Aladro-Benito Y, Álvarez-Lafuente R, Royuela A, García-Hernández R, la Fuente ORD, Romero J, García-Merino A, Sánchez-López AJ. Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate. Sci Rep 2022; 12:20300. [PMID: 36434122 PMCID: PMC9700785 DOI: 10.1038/s41598-022-21807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
The endocannabinoid system (ECS), a signalling network with immunomodulatory properties, is a potential therapeutic target in multiple sclerosis (MS). Dimethyl fumarate (DMF) is an approved drug for MS whose mechanism of action has not been fully elucidated; the possibility exists that its therapeutic effects could imply the ECS. With the aim of studying if DMF can modulate the ECS, the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined by liquid chromatography-mass spectrometry in peripheral blood mononuclear cells from 21 healthy donors (HD) and 32 MS patients at baseline and after 12 and 24 months of DMF treatment. MS patients presented lower levels of 2-AG and PEA compared to HD. 2-AG increased at 24 months, reaching HD levels. AEA and PEA remained stable at 12 and 24 months. OEA increased at 12 months and returned to initial levels at 24 months. Patients who achieved no evidence of disease activity (NEDA3) presented the same modulation over time as EDA3 patients. PEA was modulated differentially between females and males. Our results show that the ECS is dysregulated in MS patients. The increase in 2-AG and OEA during DMF treatment suggests a possible role of DMF in ECS modulation.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Posada-Ayala
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julia Sabín-Muñoz
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ismael Fernández-Miranda
- grid.5515.40000000119578126PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain ,Lymphoma Research Group, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Yolanda Aladro-Benito
- grid.411244.60000 0000 9691 6072Department of Neurology, Hospital Universitario de Getafe, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- grid.414780.eGrupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ofir Rodríguez-De la Fuente
- grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Julián Romero
- grid.449795.20000 0001 2193 453XFaculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.73221.350000 0004 1767 8416Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,grid.5515.40000000119578126Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain ,grid.483890.e0000 0004 6095 7779Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain ,Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
3
|
Leite-Avalca MCG, Zampronio A, Lehmann C. Cannabinoid Receptor 1 and 2 Signaling Pathways Involved in Sepsis. Shock 2021; 56:673-681. [PMID: 33625115 DOI: 10.1097/shk.0000000000001763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sepsis is defined as a life-threatening organ dysfunction, caused by a dysregulated host response to an infection and can progress to septic shock, which represents a major challenge in critical care with a high mortality rate. Currently, there is no definitive treatment available for the dysregulated immune response in sepsis. Therefore, a better understanding of the pathophysiological mechanisms may be useful for elucidating the molecular basis of sepsis and may contribute to the development of new therapeutic strategies. The endocannabinoid system is an emerging research topic for the modulation of the host immune response under various pathological conditions. Cannabinoid receptors include the cannabinoid type 1 receptor (CB1) and the cannabinoid type 2 receptor (CB2). This review addresses the main functionality of CB1 and CB2 in sepsis, which can contribute to a better understanding about the pathophysiology of sepsis. Specifically, we discuss the role of CB1 in the cardiovascular system which is one of the biological systems that are strongly affected by sepsis and septic shock. We are also reviewing the role of CB2 in sepsis, specially CB2 activation, which exerts anti-inflammatory activities with potential benefit in sepsis.
Collapse
Affiliation(s)
| | - Aleksander Zampronio
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Rahaman O, Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021; 164:242-252. [PMID: 34053085 DOI: 10.1111/imm.13378] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids are key bioactive components of the endocannabinoid system, and the profound influence of endocannabinoids on the modulation of the immune system is being increasingly appreciated. The knowledge of endocannabinoid-immune cell crosstalk will pave the way to therapeutic implications of modulators of this pathway in autoimmune and chronic inflammatory disorders. Endocannabinoids seem to exert both anti-inflammatory and pro-inflammatory effects in specific contexts, based on specific receptor engagement and the downstream signalling pathways involved. In this review, we summarized the biosynthesis, signalling and degradation of two well-studied endocannabinoids-anandamide and 2-arachidonylglycerol in immune cells. Then, we discussed the effects of these two endocannabinoids on the functioning of major innate and adaptive immune cells, along with the choice of receptors employed in such interactions. Finally, we outline our current knowledge on the involvement of anandamide and 2-arachidonylglycerol in context of inflammation, allergies, autoimmunity and metabolic disorders.
Collapse
Affiliation(s)
- Oindrila Rahaman
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipyaman Ganguly
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
5
|
Maramai S, Brindisi M. Targeting Endocannabinoid Metabolism: an Arrow with Multiple Tips Against Multiple Sclerosis. ChemMedChem 2020; 15:1985-2003. [PMID: 32762071 DOI: 10.1002/cmdc.202000310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system. At present, there is no definitive cure, and the few available disease-modifying options display either poor efficacy or life-threatening side effects. There is clear evidence that relapsing-remitting clinical attacks in MS are driven by inflammatory demyelination and that the subsequent disease steps, being irresponsive to immunotherapy, result from neurodegeneration. The endocannabinoid system (ECS) stands halfway between three key pathomechanisms underlying MS, namely inflammation, neurodegeneration and oxidative stress, thus representing a kingpin for the identification of novel therapeutic targets in MS. This review summarizes the current state of the art in the field of endocannabinoid metabolism modulators and their in vivo effects on relevant animal models. We also highlight key molecular underpinnings of their therapeutic efficacy as well as the potential to turn them into promising clinical candidates.
Collapse
Affiliation(s)
- Samuele Maramai
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Margherita Brindisi
- Department of Excellence of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| |
Collapse
|
6
|
Kelly R, Joers V, Tansey MG, McKernan DP, Dowd E. Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules 2020; 25:molecules25030453. [PMID: 31973235 PMCID: PMC7037317 DOI: 10.3390/molecules25030453] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration. Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death. Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system—particularly an upregulation in the immunomodulatory CB2 receptor—have been demonstrated to be related to the microglial activation state and hence the microglial phenotype. This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.
Collapse
Affiliation(s)
- Rachel Kelly
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
| | - Malú G. Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA; (V.J.); (M.G.T.)
- Center for Translation Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Declan P. McKernan
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Pharmacology & Therapeutics, National University of Ireland, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
- Correspondence:
| |
Collapse
|
7
|
Kumawat VS, Kaur G. Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur J Pharmacol 2019; 862:172628. [PMID: 31461639 DOI: 10.1016/j.ejphar.2019.172628] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023]
Abstract
The biological effects of endocannabinoid system are mediated by two types of receptors, cannabinoid 1 (CB1) and cannabinoid 2 receptor (CB2). They play a pivotal role in the management of pain, inflammation, cancer, obesity and diabetes mellitus. CB2 receptor activity downregulation is hallmark of inflammation and oxidative stress. Strong evidence display the relation between activation of CB2 receptors with decrease in the pro-inflammatory cytokines and pro-apoptotic factors. Numerous in vitro and in vivo studies have been validated to confirm the role of CB2 receptor in the management of obesity, hyperlipidemia and diabetes mellitus by regulating glucose and lipid metabolism. Activation of CB2 receptor has led to reduction of inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6), Nuclear factor kappa beta (NF-κβ) and also amelioration of reactive oxygen species and reactive nitrogen species playing role in apoptosis. Many studies confirmed the role of CB2 receptors in the insulin secretion via facilitating calcium entry into the pancreatic β-cells. CB2 receptors also displayed improvement in the neuronal and renal functions by decreasing the oxidative stress and downregulating inflammatory cascade. The present review addresses, potential role of CB2 receptor activation in management of diabetes and its complications. It also includes the role of CB2 receptors as an anti-oxidant, anti-apoptotic and anti-inflammatory for the treatment of DM and its complications. Also, an informative summary of CB2 receptor agonist drugs is provided with their potential role in the reduction of glucose levels, increment in the insulin levels, decrease in the hyperglycaemic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Vivek S Kumawat
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
8
|
Parameters of the Endocannabinoid System as Novel Biomarkers in Sepsis and Septic Shock. Metabolites 2017; 7:metabo7040055. [PMID: 29104224 PMCID: PMC5746735 DOI: 10.3390/metabo7040055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis represents a dysregulated immune response to infection, with a continuum of severity progressing to septic shock. This dysregulated response generally follows a pattern by which an initial hyperinflammatory phase is followed by a state of sepsis-associated immunosuppression. Major challenges in improving sepsis care include developing strategies to ensure early and accurate identification and diagnosis of the disease process, improving our ability to predict outcomes and stratify patients, and the need for novel sepsis-specific treatments such as immunomodulation. Biomarkers offer promise with all three of these challenges and are likely also to be the solution to determining a patient’s immune status; something that is critical in guiding effective and safe immunomodulatory therapy. Currently available biomarkers used in sepsis lack sensitivity and specificity, among other significant shortcomings. The endocannabinoid system (ECS) is an emerging topic of research with evidence suggesting a ubiquitous presence on both central and peripheral tissues, including an intrinsic link with immune function. This review will first discuss the state of sepsis biomarkers and lack of available treatments, followed by an introduction to the ECS and a discussion of its potential to provide novel biomarkers and treatments.
Collapse
|
9
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
10
|
Sido JM, Nagarkatti PS, Nagarkatti M. Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 2017; 46:1472-9. [PMID: 27064137 DOI: 10.1002/eji.201546181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 11/07/2022]
Abstract
Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and 2-arachidonyl glycerol (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity. However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed-type hypersensitivity (DTH) and antibody response. We found that while naïve T cells and B cells expressed low levels of 2-AG, expression significantly increased upon activation. Furthermore, mBSA-immunized mice exhibited higher 2-AG concentration than naïve mice. Exogenous 2-AG treatment (40 mg/kg) in mBSA-immunized mice led to reduced DTH response, and decreased Th1 and Th17-associated cytokines including IL-6, IL-2, TNF-α, and the IgG response. Addition of 2-AG to activated popliteal lymph node (PopLN) cell cultures also inhibited lymphocyte proliferation. Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation. Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.
Collapse
Affiliation(s)
- Jessica M Sido
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
11
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 2017; 69:7-17. [PMID: 26252398 DOI: 10.1111/prd.12104] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
The past decade of basic research in periodontology has driven radical changes in our understanding and perceptions of the pathogenic processes that drive periodontal tissue destruction. The core elements of the classical model of disease pathogenesis, developed by Page & Kornman in 1997, remain pertinent today; however, our understanding of the dynamic interactions between the various microbial and host factors has changed significantly. The molecular era has unraveled aspects of genetics, epigenetics, lifestyle and environmental factors that, in combination, influence biofilm composition and the host's inflammatory immune response, creating a heterogenic biological phenotype that we label as 'periodontitis'. In this volume of Periodontology 2000, experts in their respective fields discuss these emerging concepts, such as a health-promoting biofilm being essential for periodontal stability, involving a true symbiosis between resident microbial species and each other and also with the host response to that biofilm. Rather like the gut microbiome, changes in the local environment, which may include inflammatory response mediators or viruses, conspire to drive dysbiosis and create a biofilm that supports pathogenic species capable of propagating disease. The host response is now recognized as the major contributor to periodontal tissue damage in what becomes a dysfunctional, poorly targeted and nonresolving inflammation that only serves to nourish and sustain the dysbiosis. The role of epithelial cells in signaling to the immune system is becoming clearer, as is the role of dendritic cells as transporters of periodontal pathogens to distant sites within the body, namely metastatic infection. The involvement of nontraditional immune cells, such as natural killer cells, is being recognized, and the simple balance between T-helper 1- and T-helper 2-type T-cell populations has become less clear with the emergence of T-regulatory cells, T-helper 17 cells and follicular helper cells. The dominance of the neutrophil has emerged, not only as a potential destructor when poorly regulated but as an equally unpredictable effector cell for specific B-cell immunity. The latter has emerged, in part, from the realization that neutrophils live for 5.4 days in the circulation, rather than for 24 h, and are also schizophrenic in nature, being powerful synthesizers of proinflammatory cytokines but also responding to prostaglandin signals to trigger a switch to a pro-resolving phenotype that appears capable of regenerating the structure and function of healthy tissue. Key to these outcomes are the molecular signaling pathways that dominate at any one time, but even these are influenced by microRNAs capable of 'silencing' certain inflammatory genes. This volume of Periodontology 2000 tries to draw these complex new learnings into a contemporary model of disease pathogenesis, in which inflammation and dysbiosis impact upon whether the outcome is driven toward acute resolution and stability, chronic resolution and repair, or failed resolution and ongoing periodontal tissue destruction.
Collapse
|
13
|
Pavón FJ, Marco EM, Vázquez M, Sánchez L, Rivera P, Gavito A, Mela V, Alén F, Decara J, Suárez J, Giné E, López-Moreno JA, Chowen J, Rodríguez-de-Fonseca F, Serrano A, Viveros MP. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats. PLoS One 2016; 11:e0163752. [PMID: 27662369 PMCID: PMC5035052 DOI: 10.1371/journal.pone.0163752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats with a strong sexual dimorphism. The potential impact of these alterations in early adulthood remains to be elucidated.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Eva María Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Mariam Vázquez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Ana Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Virginia Mela
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Francisco Alén
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | | | - Julie Chowen
- Servicio de Pediatría y Endocrinología Pediátrica, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Rodríguez-de-Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
- * E-mail: (ASC); (MPV)
| | - María Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail: (ASC); (MPV)
| |
Collapse
|
14
|
Moradi H, Oveisi F, Khanifar E, Moreno-Sanz G, Vaziri ND, Piomelli D. Increased Renal 2-Arachidonoylglycerol Level Is Associated with Improved Renal Function in a Mouse Model of Acute Kidney Injury. Cannabis Cannabinoid Res 2016; 1:218-228. [PMID: 28861493 PMCID: PMC5531066 DOI: 10.1089/can.2016.0013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is associated with a significantly increased risk of morbidity and mortality. Ischemia-reperfusion injury (IRI) is a major cause of AKI. In this study, we investigated the role of the endocannabinoid (EC) system in renal IRI using a well-established mouse model. Materials and Methods: Renal ischemia was induced in male C57BL/6 mice by clamping both kidney pedicles for 30 min followed by 24 h of reperfusion. To increase renal 2-arachidonoylglycerol (2-AG) levels, mice were pretreated with JZL184 (16 mg/kg), 30 min before IRI. Serum creatinine and blood urea nitrogen (BUN), renal tubular damage, renal content of ECs and renal expression of markers of inflammation and oxidative stress were measured. Results: Renal IRI was associated with significantly increased serum BUN and creatinine, increased tubular damage score, increased expression of renal markers of inflammation and oxidative stress and elevated renal 2-AG content. Pretreatment with JZL184 was associated with a significant increase in renal 2-AG content and there was also improved serum BUN, creatinine and tubular damage score. However, renal expression of inflammation and oxidative stress markers remained unchanged. Conclusions: This is the first report documenting that renal IRI is associated with an increase in kidney 2-AG content. Further enhancement of 2-AG levels using JZL184 improved indices of renal function and histology, but did not lower renal expression of markers of inflammation and oxidative stress. Further studies are needed to determine the mechanisms responsible for the effects observed and the potential value of 2-AG as a therapeutic target in renal IRI.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, Orange, California.,Nephrology Section, Long Beach VA Healthcare System, Long Beach, California
| | - Fariba Oveisi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Elham Khanifar
- Long Beach Memorial Pathology Group, Long Beach, California
| | - Guillermo Moreno-Sanz
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, Orange, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| |
Collapse
|
15
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
16
|
Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology 2015; 144:352-364. [PMID: 25585882 DOI: 10.1111/imm.12441] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Luca Battistini
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Centre for Brain Research (CERC), I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.,Centre of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
17
|
Sido JM, Nagarkatti PS, Nagarkatti M. Role of Endocannabinoid Activation of Peripheral CB1 Receptors in the Regulation of Autoimmune Disease. Int Rev Immunol 2014; 34:403-14. [PMID: 24911431 DOI: 10.3109/08830185.2014.921165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The impact of the endogenous cannabinoids (AEA, 2-AG, PEA, and virodamine) on the immune cell expressed cannabinoid receptors (CB1, CB2, TRPV-1, and GPR55) and consequent regulation of immune function is an exciting area of research with potential implications in the prevention and treatment of inflammatory and autoimmune diseases. Despite significant advances in understanding the mechanisms through which cannabinoids regulate immune functions, not much is known about the role of endocannabinoids in the pathogenesis or prevention of autoimmune diseases. Inasmuch as CB2 expression on immune cells and its role has been widely reported, the importance of CB1 in immunological disorders has often been overlooked especially because it is not highly expressed on naive immune cells. Therefore, the current review aims at delineating the effect of endocannabinoids on CB1 receptors in T cell driven autoimmune diseases. This review will also highlight some autoimmune diseases in which there is evidence indicating a role for endocannabinoids in the regulation of autoimmune pathogenesis. Overall, based on the evidence presented using the endocannabinoids, specifically AEA, we propose that the peripheral CB1 receptor is involved in the regulation and amelioration of inflammation associated with autoimmune diseases.
Collapse
Affiliation(s)
- Jessica Margaret Sido
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Prakash S Nagarkatti
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Mitzi Nagarkatti
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| |
Collapse
|
18
|
Wilhelmsen K, Khakpour S, Tran A, Sheehan K, Schumacher M, Xu F, Hellman J. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J Biol Chem 2014; 289:13079-100. [PMID: 24644287 DOI: 10.1074/jbc.m113.536953] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.
Collapse
|
19
|
Jin MC, Liu XW, Kim MR, Sok DE. Immunosuppressive and anti-inflammatory effects of N-acyl dopamines on Con A-stimulated splenocytes of BALB/c mouse. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mei Chen Jin
- College of Pharmacy; Chungnam National University; Daejeon Republic of Korea
| | - Xi-Wen Liu
- Center of Laboratory; Yanbian University Hospital; Yanji Jilin Provinc. China
| | - Mee Ree Kim
- Department of Food and Nutrition; Chungnam National University; Daejeon Republic of Korea
| | - Dai-Eun Sok
- College of Pharmacy; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
20
|
Cannabinoid receptor 2 protects against acute experimental sepsis in mice. Mediators Inflamm 2013; 2013:741303. [PMID: 23781122 PMCID: PMC3679685 DOI: 10.1155/2013/741303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
The systemic inflammatory response syndrome can be self-limited or can progress to severe sepsis and septic shock. Despite significant advances in the understanding of the molecular and cellular mechanisms of septic shock, it is still one of the most frequent and serious problems confronting clinicians in the treatments. And the effects of cannabinoid receptor 2 (CB2R) on the sepsis still remain undefined. The present study was aimed to explore the role and mechanism of CB2R in acute sepsis model of mice. Here, we found that mice were more vulnerable for lipopolysaccharide- (LPS-) induced death and inflammation after CB2R deletion (CB2R−/−). CB2R agonist, GW405833, could significantly extend the survival rate and decrease serum proinflammatory cytokines in LPS-treated mice. GW405833 dose-dependently inhibits proinflammatory cytokines release in splenocytes and peritoneal macrophages as well as splenocytes proliferation, and these effects were partly abolished in CB2R−/− splenocytes but completely abolished in CB2R−/− peritoneal macrophages. Further studies showed that GW405833 inhibits LPS-induced phosphorylation of ERK1/2 and STAT3 and blocks IκBα degradation and NF-κB p65 nuclear translocation in macrophages. All data together showed that CB2R provides a protection and is a potential therapeutic target for the sepsis.
Collapse
|
21
|
Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 2013; 33:246-64. [DOI: 10.1002/jat.2828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Panagiotis Zogopoulos
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Ioanna Vasileiou
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Stamatios Theocharis
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| |
Collapse
|
22
|
Raman P, Kaplan BLF, Kaminski NE. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂-glycerol, a putative metabolite of 2-arachidonyl glycerol and a peroxisome proliferator-activated receptor γ ligand, modulates nuclear factor of activated T cells. J Pharmacol Exp Ther 2012; 342:816-26. [PMID: 22700433 PMCID: PMC3422518 DOI: 10.1124/jpet.112.193003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/12/2012] [Indexed: 01/02/2023] Open
Abstract
2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative released on demand from membrane precursors. 2-AG-mediated suppression of interleukin (IL)-2 depends on cyclooxygenase 2 (COX-2) metabolism and peroxisome proliferator-activated receptor γ (PPARγ) activation. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂-glycerol ester (15d-PGJ₂-G), a putative COX-2 metabolite of 2-AG, acts as a PPARγ ligand and produces IL-2 suppression in activated Jurkat T cells, in part, by decreasing nuclear factor of activated T cells (NFAT) transcriptional activity. The objective of the present studies was to investigate the mechanism by which 15d-PGJ₂-G modulates NFAT activity to suppress IL-2. 15d-PGJ₂-G treatment decreased phorbol 12-myristate 13-acetate (PMA)/calcium ionophore (I₀)-induced NFAT DNA binding to the human IL-2 promoter and nuclear NFAT2 accumulation. It is noteworthy that 15d-PGJ₂-G treatment increased active nuclear HDM2 (human homolog of the oncoprotein and E3 ubiquitin ligase murine double minute 2) expression, whereas there was no change in the expression of glycogen synthase kinase 3β, both of which regulate NFAT. 15d-PGJ₂-G and other PPARγ agonists, such as rosiglitazone and ciglitazone, decreased PMA/I₀-mediated elevation in intracellular calcium concentration ([Ca²⁺](i)) in activated Jurkat cells. We were surprised to find that the PPARγ antagonists 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907) and 2-chloro-5-nitrobenzanilide (GW9662) also decreased the PMA/I₀-mediated elevation in [Ca²⁺](i) in activated T cells. In addition, the presence of T0070907 plus 15d-PGJ₂-G produced an additive decrease in PMA/I₀-mediated elevation of [Ca²⁺](i), suggesting that the 15d-PGJ₂-G effects on calcium might be either PPARγ-independent or -dependent on occupation of the PPARγ ligand binding domain. Collectively, our findings suggest that 15d-PGJ₂-G increases active nuclear HDM2, which could lead to a decrease in NFAT2 and IL-2 suppression.
Collapse
Affiliation(s)
- Priyadarshini Raman
- Department of Pharmacology and Toxicology and the Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
23
|
Ghosh S, Wise LE, Chen Y, Gujjar R, Mahadevan A, Cravatt BF, Lichtman AH. The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model. Life Sci 2012; 92:498-505. [PMID: 22749865 DOI: 10.1016/j.lfs.2012.06.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
AIM The present study tested whether the selective monoacylglycerol lipase (MAGL) inhibitor JZL184 would reduce allodynia and paw edema in the carrageenan test. MAIN METHODS The anti-edematous and anti-allodynic effects of JZL184 were compared to those of PF-3845, an inhibitor of fatty acid amide hydrolase (FAAH), and diclofenac, a non-selective cyclooxygenase inhibitor. Cannabinoid receptor involvement in the anti-edematous and anti-allodynic effects of JZL184 was evaluated by administration of the respective CB1 and CB2 receptor antagonists rimonabant and SR144528 as well as with CB1(-/-) and CB2(-/-) mice. JZL184 (1.6, 4, 16, or 40mg/kg) was administered for six days to assess tolerance. KEY FINDINGS JZL184 administered before or after carrageenan significantly attenuated carrageenan-induced paw edema and mechanical allodynia. Complementary genetic and pharmacological approaches revealed that the anti-allodynic effects of JZL184 required both CB1 and CB2 receptors, but only CB2 receptors mediated its anti-edematous actions. Importantly, both the anti-edematous and anti-allodynic effects underwent tolerance following repeated injections of high dose JZL184 (16 or 40mg/kg), but repeated administration of low dose JZL184 (4mg/kg) retained efficacy. SIGNIFICANCE These results suggest that the MAGL inhibitor JZL184 reduces inflammatory nociception through the activation of both CB1 and CB2 receptors, with no evidence of tolerance following repeated administration of low doses.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA 23298-0613, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Raman P, Kaplan BLF, Thompson JT, Vanden Heuvel JP, Kaminski NE. 15-Deoxy-delta12,14-prostaglandin J2-glycerol ester, a putative metabolite of 2-arachidonyl glycerol, activates peroxisome proliferator activated receptor gamma. Mol Pharmacol 2011; 80:201-9. [PMID: 21511917 PMCID: PMC3127542 DOI: 10.1124/mol.110.070441] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/21/2011] [Indexed: 11/22/2022] Open
Abstract
2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ(12,14)-PGJ(2)-glycerol ester (15d-PGJ(2)-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ(2)-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ(2)-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ(2)-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ(2)-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ(2)-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ(2)-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells.
Collapse
Affiliation(s)
- Priyadarshini Raman
- Department of Pharmacology & Toxicology and the Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1317, USA
| | | | | | | | | |
Collapse
|
25
|
Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 2011; 1390:126-41. [PMID: 21406188 DOI: 10.1016/j.brainres.2011.03.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. EXPERIMENTAL APPROACH Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. KEY RESULTS 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. CONCLUSION AND IMPLICATIONS Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE.
Collapse
|
26
|
Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M, Marsolais D, Laviolette M, Flamand N. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3188-96. [PMID: 21278347 DOI: 10.4049/jimmunol.1002853] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.
Collapse
Affiliation(s)
- François Chouinard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Québec G1V 4G5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Börner C, Smida M, Höllt V, Schraven B, Kraus J. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem 2010; 284:35450-60. [PMID: 19858202 DOI: 10.1074/jbc.m109.006338] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.
Collapse
Affiliation(s)
- Christine Börner
- Departments of Pharmacology and Toxicology, University of Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Paudel KS, Chen J, Stinchcomb AL. LC–MS Method for the Pharmacokinetic Evaluation of 2-Arachidonoyl Glycerol in Small Volume Plasma Samples. Chromatographia 2009. [DOI: 10.1365/s10337-009-1413-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Kupczyk P, Reich A, Szepietowski JC. Cannabinoid system in the skin - a possible target for future therapies in dermatology. Exp Dermatol 2009; 18:669-79. [PMID: 19664006 DOI: 10.1111/j.1600-0625.2009.00923.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries. The major agent of exogenous cannabinoids is Delta(9)-tetrahydrocannabinol (Delta(9)-THC), natural psychoactive ingredient of marijuana. However, psychoactive properties of these substances limited their use as approved medicines. Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases. Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet. In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | |
Collapse
|
30
|
Tschöp J, Kasten KR, Nogueiras R, Goetzman HS, Cave CM, England LG, Dattilo J, Lentsch AB, Tschöp MH, Caldwell CC. The cannabinoid receptor 2 is critical for the host response to sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:499-505. [PMID: 19525393 PMCID: PMC2763235 DOI: 10.4049/jimmunol.0900203] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukocyte function can be modulated through the cannabinoid receptor 2 (CB2R). Using a cecal ligation and puncture (CLP) model of sepsis, we examined the role of the CB2R during the immune response to an overwhelming infection. CB2R-knock out (KO) mice showed decreased survival as compared with wild-type mice. CB2R-KO mice also had increased serum IL-6 and bacteremia. Twenty-four hours after CLP, the CB2R-deficient mice had increased lung injury. Additionally, CB2R-deficiency led to increased neutrophil recruitment, decreased neutrophil activation, and decreased p38 activity at the site of infection. Consistent with a novel role for CB2R in sepsis, CB2R-agonist treatment in wild-type mice increased the mean survival time in response to CLP. Treatment with CB2R-agonist also decreased serum IL-6 levels, bacteremia, and damage to the lungs compared with vehicle-treated mice. Finally, the CB2R agonist decreased neutrophil recruitment, while increasing neutrophil activation and p38 activity at the site of infection compared with vehicle-treated mice. These data suggest that CB2R is a critical regulator of the immune response to sepsis and may be a novel therapeutic target.
Collapse
MESH Headings
- Animals
- Bacteremia/immunology
- Bacteremia/microbiology
- Bacteremia/mortality
- Bacteremia/pathology
- Cecum
- Disease Models, Animal
- Immunity, Innate/genetics
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Integrin alpha2/administration & dosage
- Integrin alpha2/therapeutic use
- Ligation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Punctures
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/physiology
- Shock, Septic/immunology
- Shock, Septic/microbiology
- Shock, Septic/mortality
- Shock, Septic/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Johannes Tschöp
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Department of Anesthesiology, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Kevin R. Kasten
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Ruben Nogueiras
- Department of Psychiatry, Obesity Research Centre-Genome Research Institute, University of Cincinnati, Cincinnati, OH 45226
| | - Holly S. Goetzman
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Cynthia M. Cave
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa G. England
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Department of Research, Shriner’s Hospital for Children, Cincinnati, OH 45229
| | - Jonathan Dattilo
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Alex B. Lentsch
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matthias H. Tschöp
- Department of Psychiatry, Obesity Research Centre-Genome Research Institute, University of Cincinnati, Cincinnati, OH 45226
| | - Charles C. Caldwell
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Department of Research, Shriner’s Hospital for Children, Cincinnati, OH 45229
| |
Collapse
|
31
|
Abstract
2-Arachidonoylglycerol is an arachidonic acid-containing monoacylglycerol isolated from the rat brain and canine gut as an endogenous ligand for the cannabinoid receptors (CB1 and CB2). 2-Arachidonoylglycerol binds to both the CB1 receptor, abundantly expressed in the nervous system, and the CB2 receptor, mainly expressed in the immune system, with high affinity, and exhibits a variety of cannabimimetic activities. Notably, anandamide, another endogenous ligand for the cannabinoid receptors, acts as a partial agonist at these cannabinoid receptors, whereas 2-arachidonoylglycerol acts as a full agonist. The results of structure-activity relationship experiments strongly suggested that 2-arachidonoylglycerol rather than anandamide is the true natural ligand for both the CB1 and the CB2 receptors. Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays physiologically and pathophysiologically essential roles in various mammalian tissues and cells.
Collapse
Affiliation(s)
- Takayuki Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.
| |
Collapse
|
32
|
Kaplan BLF, Springs AEB, Kaminski NE. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 2008; 76:726-37. [PMID: 18656454 PMCID: PMC2748879 DOI: 10.1016/j.bcp.2008.06.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
Cannabidiol (CBD) is a cannabinoid compound derived from Cannabis Sativa that does not possess high affinity for either the CB1 or CB2 cannabinoid receptors. Similar to other cannabinoids, we demonstrated previously that CBD suppressed interleukin-2 (IL-2) production from phorbol ester plus calcium ionophore (PMA/Io)-activated murine splenocytes. Thus, the focus of the present studies was to further characterize the effect of CBD on immune function. CBD also suppressed IL-2 and interferon-gamma (IFN-gamma) mRNA expression, proliferation, and cell surface expression of the IL-2 receptor alpha chain, CD25. While all of these observations support the fact that CBD suppresses T cell function, we now demonstrate that CBD suppressed IL-2 and IFN-gamma production in purified splenic T cells. CBD also suppressed activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) transcriptional activity, which are critical regulators of IL-2 and IFN-gamma. Furthermore, CBD suppressed the T cell-dependent anti-sheep red blood cell immunoglobulin M antibody forming cell (anti-sRBC IgM AFC) response. Finally, using splenocytes derived from CB1(-/-)/CB2(-/-) mice, it was determined that suppression of IL-2 and IFN-gamma and suppression of the in vitro anti-sRBC IgM AFC response occurred independently of both CB1 and CB2. However, the magnitude of the immune response to sRBC was significantly depressed in CB1(-/-)/CB2(-/-) mice. Taken together, these data suggest that CBD suppresses T cell function and that CB1 and/or CB2 play a critical role in the magnitude of the in vitro anti-sRBC IgM AFC response.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
33
|
Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB1 receptor. Br J Pharmacol 2008; 155:24-33. [PMID: 18536748 DOI: 10.1038/bjp.2008.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Long-term adaptations to pharmacological stimuli frequently originate from modulation of complex intracellular signalling pathways. We previously reported that HU210 and CP55940, two CB1 cannabinoid receptor agonists, induced opposite effects on TH expression. Herein, we characterized their influence on cAMP response element (CRE) and activator protein 1 (AP-1)-mediated regulation of gene transcription. EXPERIMENTAL APPROACH The activity of the agonists was examined on transfected N1E-115 cells in which expression of the luciferase reporter gene was controlled by transcription promoters consisting of repeats of either CRE or AP-1 elements. In addition, the implication of classical signalling pathways was investigated using a variety of kinase inhibitors. KEY RESULTS Consistent with the CB1-mediated reduction of cAMP accumulation, both ligands decreased CRE-driven luciferase expression with similar potencies. HU210 also exhibited a concentration-dependent reduction of luciferase activity in cells engineered to examine AP-1-controlled transcription, whereas such response was not obtained with CP55940. Responses were all inhibited by SR141716A and were modified in Pertussis toxin-treated cells, suggesting agonist-selective regulations of distinct Gi/o-dependent mechanisms through CB1 receptor activation. Finally, PKC inhibitors efficiently inhibited the paradoxical effect of HU210 on AP-1-mediated transcription, indicating selective regulation of PKC-dependent responses. CONCLUSIONS AND IMPLICATIONS Together, our results demonstrate that two cannabinoid ligands, commonly used as reference agonists acting on the same receptor with similar affinities, differentially modulate gene transcription through distinct controls of AP-1. This could reflect activation of distinct subsets of Gi/o-proteins, supporting the concept of functional selectivity at CB1 receptors.
Collapse
|
34
|
Rockwell CE, Raman P, Kaplan BLF, Kaminski NE. A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol 2008; 76:353-61. [PMID: 18571623 DOI: 10.1016/j.bcp.2008.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 11/15/2022]
Abstract
Previous studies from this laboratory have demonstrated that a COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol (2-AG), inhibits IL-2 secretion in activated T cells through PPARgamma activation independent of the cannabinoid receptors, CB1/CB2. Because numerous cyclooxygenase (COX) products have been shown to activate PPARgamma, the primary purpose of the present studies was to determine the role of COX metabolism in the inhibition of IL-2 secretion by 2-AG. Pretreatment with nonselective and COX-2-specific inhibitors completely abrogated 2-AG-mediated suppression of IL-2 secretion. In contrast, pretreatment with COX-1-specific inhibitors had no effect upon 2-AG-mediated inhibition of IL-2 secretion. Interestingly, the current studies also demonstrate that while the potency of 2-AG is comparable between human Jurkat T cells and murine splenocytes, anandamide (AEA) is markedly more potent in suppressing IL-2 production in Jurkat T cells compared to murine splenocytes. Additionally, the present studies also demonstrate that COX-2 protein is readily detectable in resting Jurkat T cells, which is in contrast to resting murine splenocytes in which COX-2 protein is virtually undetectable. Furthermore, COX-2 protein and mRNA levels are significantly increased over basal levels by 2h following activation of Jurkat cells, whereas increases in COX-2 protein in murine splenocytes are not observed until 4h after cellular activation. These studies suggest that the potency of AEA in the suppression of IL-2 secretion may correlate with COX-2 protein levels in different T cell models. The present studies are also significant in that they demonstrate 2-AG-mediated inhibition of IL-2 secretion is dependent upon COX-2 metabolism.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology & Toxicology and the Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | |
Collapse
|
35
|
Tanikawa T, Kurohane K, Imai Y. Induction of preferential chemotaxis of unstimulated B-lymphocytes by 2-arachidonoylglycerol in immunized mice. Microbiol Immunol 2008; 51:1013-9. [PMID: 17951991 DOI: 10.1111/j.1348-0421.2007.tb03985.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
2-Arachidonoylglycerol (2-AG) is an endogenous ligand for cannabinoid receptors. There are two types of cannabinoid receptors, CB1 and CB2. We investigated the chemotactic activity of 2-AG using mouse lymphocytes because cells in the immune system are known to express CB2 . Spleen cell migration toward 2-AG was observed, which was completely inhibited by SR144528, a CB2-specific antagonist. 2-AG has been reported to induce a preferential B cell chemotaxis. We examined whether there is any difference in responsiveness during the activation of B cells. When spleen cells from immunized mice were tested, naive B cells but not germinal center B cells (GL7-positive) were increased in the fraction attracted by 2-AG. Furthermore, when Peyer's patch lymphocytes were tested after oral administration of cholera toxin, the number of IgA* B cells was increased in the fraction attracted by 2-AG. These results suggested that 2-AG preferentially attracts unstimulated naive B cells rather than activated and/or class-switched B cells. This property may influence the structure of B cell compartments in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Takashi Tanikawa
- Laboratory of Microbiology and Immunology and COE Program in the 21st Century, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, 422-8526, Japan
| | | | | |
Collapse
|
36
|
Buchweitz JP, Karmaus PWF, Williams KJ, Harkema JR, Kaminski NE. Targeted deletion of cannabinoid receptors CB1and CB2produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Δ9-tetrahydrocannabinol. J Leukoc Biol 2007; 83:785-96. [DOI: 10.1189/jlb.0907618] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
37
|
Abstract
This review gives an overview of the CB2 receptor (CB2R) knockout (CB2R-/-) mice phenotype and the work that has been carried out using this mutant mouse. Using the CB2R-/- mice, investigators have discovered the involvement of CB2R on immune cell function and development, infection, embryonic development, bone loss, liver disorders, pain, autoimmune inflammation, allergic dermatitis, atherosclerosis, apoptosis and chemotaxis. Using the CB2R-/- mice, investigators have also found that this receptor is not involved in cannabinoid-induced hypotension. In addition, the CB2R-/- mice have been used to determine specific tissue CB2R expression. The specificity of synthetic cannabinoid agonists, antagonists and anti-CB2R antibodies has been screened using tissues from CB2R-/- mice. Thus, the use of this mouse model has greatly helped reveal the diverse events involving the CB2R, and has aided in drug and antibody screening.
Collapse
Affiliation(s)
- N E Buckley
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA.
| |
Collapse
|
38
|
Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B. The inhibition of monoacylglycerol lipase by URB602 showed an anti-inflammatory and anti-nociceptive effect in a murine model of acute inflammation. Br J Pharmacol 2007; 152:787-94. [PMID: 17700715 PMCID: PMC2190015 DOI: 10.1038/sj.bjp.0707425] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE 2-arachidonoylglycerol (2-AG) is an endocannabinoid whose hydrolysis is predominantly catalysed by the enzyme monoacylglycerol lipase (MAGL). The development of MAGL inhibitors could offer an opportunity to investigate the anti-inflammatory and anti-nociceptive role of 2-AG, which have not yet been elucidated. On these bases, URB602, a MAGL inhibitor, was tested in a murine model of inflammation/inflammatory pain. EXPERIMENTAL APPROACH Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice. The highest dose to be employed has been selected performing the tetrad assays for cannabimimetic activity in mice. URB602 anti-inflammatory and anti-nociceptive efficacy (assessed by plethysmometer and plantar test, respectively) was evaluated both in a preventive regimen (drug administered 30 min before carrageenan) and in a therapeutic regimen (URB602 administered 30 min after carrageenan). To elucidate the cannabinoid receptor involvement, rimonabant and SR144528, CB1 and CB2 selective antagonists, respectively, were given 15 min before URB602. KEY RESULTS Systemic administration of URB602 elicited a dose-dependent anti-oedemigen and anti-nociceptive effect that was reversed exclusively by the CB2 receptor antagonist. The efficacy of URB602 persisted also when the compound was administered in a therapeutic regimen, suggesting the ability of URB602 to improve established disease. CONCLUSIONS AND IMPLICATIONS The present report highlighted the ability of the selective MAGL inhibitor, URB602, to prevent and treat an acute inflammatory disease without producing adverse psychoactive effects. The data presented herein also contributed to clarify the physiological role of 2-AG in respect to inflammatory reactions, suggesting its protective role in the body.
Collapse
Affiliation(s)
- F Comelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | |
Collapse
|
39
|
Oka S, Wakui J, Ikeda S, Yanagimoto S, Kishimoto S, Gokoh M, Nasui M, Sugiura T. Involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in oxazolone-induced contact dermatitis in mice. THE JOURNAL OF IMMUNOLOGY 2007; 177:8796-805. [PMID: 17142782 DOI: 10.4049/jimmunol.177.12.8796] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The possible involvement of 2-arachidonoylglycerol (2-AG), an endogenous ligand for the cannabinoid receptors (CB1 and CB2), in contact dermatitis in mouse ear was investigated. We found that the level of 2-AG was markedly elevated in the ear following a challenge with oxazolone in sensitized mice. Of note, the swelling following the challenge was suppressed by either the administration of SR144528, a CB2 receptor antagonist, immediately after sensitization, or the administration of SR144528 upon the challenge. The effect of AM251, a CB1 receptor antagonist, was marginal in either case. It seems apparent, therefore, that the CB2 receptor and its endogenous ligand 2-AG are closely involved in both the sensitization phase and the elicitation phase of oxazolone-induced contact dermatitis. In line with this, we found that Langerhans cells (MHC class II(+)) contain a substantial amount of CB2 receptor mRNA, whereas keratinocytes (MHC class II(-)) do not. We also obtained evidence that the expression of mRNAs for proinflammatory cytokines following a challenge with oxazolone was markedly suppressed by treatment with SR144528. We next examined whether the CB2 receptor and 2-AG participate in chronic contact dermatitis accompanied by the infiltration of tissues by eosinophils. The amount of 2-AG in mouse ear dramatically increased following repeated challenge with oxazolone. Importantly, treatment with SR144528 attenuated both the recruitment of eosinophils and ear swelling in chronic contact dermatitis induced by repeated challenge with oxazolone. These results strongly suggest that the CB2 receptor and 2-AG play important stimulative roles in the sensitization, elicitation, and exacerbation of allergic inflammation.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Börner C, Höllt V, Kraus J. Activation of human T cells induces upregulation of cannabinoid receptor type 1 transcription. Neuroimmunomodulation 2007; 14:281-6. [PMID: 18287809 DOI: 10.1159/000117809] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/14/2007] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Effects of cannabinoids are mediated by CB1 and CB2 receptors. In addition to neuronal effects, cannabinoids are potent modulators of immune functions. In this report, we investigated whether the transcription of these receptors is regulated after activation of T lymphocytes. METHODS CB1- and CB2-specific mRNA of primary human peripheral blood T cells and cells of the human T cell line Jurkat was measured by quantitative real-time RT-PCR in response to CD3/28. Using the decoy oligonucleotide approach, transcription factors involved in the regulation were determined. A promoter analysis was performed using transient transfection of chloramphenicol acetyl transferase reporter gene constructs in Jurkat cells. RESULTS Activation of human T cells caused an induction of CB1 mRNA expression in primary human T cells (8-fold) and Jurkat cells (29-fold). In contrast, CB2 transcription was not regulated. The CD3/28-mediated upregulation of CB1 involves the transcription factors AP-1, NF kappaB and NFAT. Furthermore, 2,490 bp of the CB1 promoter mediated inducibility in response to CD3/28. CONCLUSIONS The upregulation of CB1 in activated T cells, together with the constitutive expression of CB2, enables cellular responses to cannabinoids mediated by both receptor subtypes. It may thus contribute to the understanding of the various modulatory effects of cannabinoids on activated T cells.
Collapse
Affiliation(s)
- Christine Börner
- Department of Pharmacology and Toxicology, University of Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
41
|
Gokoh M, Kishimoto S, Oka S, Sugiura T. 2-Arachidonoylglycerol Enhances the Phagocytosis of Opsonized Zymosan by HL-60 Cells Differentiated into Macrophage-Like Cells. Biol Pharm Bull 2007; 30:1199-205. [PMID: 17603153 DOI: 10.1248/bpb.30.1199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). While evidence is accumulating that the CB1 receptor plays important regulatory roles in various nervous tissues and cells, the physiological roles of the CB2 receptor, which is abundantly expressed in the immune system, are yet to be determined. In this study, we examined in detail the effect of 2-arachidonoylglycerol on the phagocytosis of opsonized zymosan by HL-60 cells that had differentiated into macrophage-like cells. We found that the addition of 2-arachidonoylglycerol augmented the phagocytosis of opsonized zymosan by the differentiated HL-60 cells. The effect was observed from 1 nM and increased with increasing concentrations of 2-arachidonoylglycerol. Treatment of the cells with SR144528 or pertussis toxin abolished the effect of 2-arachidonoylglycerol, indicating that the CB2 receptor and Gi/o are involved in the augmented phagocytosis. Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase were also suggested to be involved; treatment of the cells with wortmannin or PD98059 abrogated the 2-arachidonoylglycerol-augmented phagocytosis. These results strongly suggest that 2-arachidonoylglycerol, derived from stimulated inflammatory cells, has an important role in augmenting the phagocytosis of invading microorganisms by macrophages/monocytes thereby stimulating inflammatory reactions and immune responses.
Collapse
Affiliation(s)
- Maiko Gokoh
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan
| | | | | | | |
Collapse
|
42
|
Mormina ME, Thakur S, Molleman A, Whelan CJ, Baydoun AR. Cannabinoid signalling in TNF-α induced IL-8 release. Eur J Pharmacol 2006; 540:183-90. [PMID: 16714014 DOI: 10.1016/j.ejphar.2006.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The molecular events mediating the immunomodulatory properties of cannabinoids have remained largely unresolved. We have therefore investigated the molecular mechanism(s) through which R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone (WIN55212-2) modulate production of interleukin-8 (IL-8) in HT-29 cells. Release of IL-8 induced by tumor necrosis factor-alpha (TNF-alpha) was determined by enzyme-linked immunosorbent assay (ELISA). Changes in expression of inhibitory kappa B (IkappaB) were monitored by Western blotting and activation of nuclear factor-kappa B (NF-kappaB) was determined in electrophoretic mobility shift assay (EMSAs). TNF-alpha induced release of IL-8 was inhibited by WIN55212-2 which also blocked the degradation of IkappaB-alpha and activation of NF-kappaB induced by TNF-alpha. These data provide strong evidence that WIN55212-2 may modulate IL-8 release by negatively regulating the signaling cascade leading to the activation of NF-kappaB. These findings highlight a potential mechanism for the immunomodulatory properties of cannabinoids and contribute towards acquiring a clear understanding of the role of cannabinoids in inflammation.
Collapse
Affiliation(s)
- Maria E Mormina
- School of Life Sciences, University of Hertfordshire, Faculty of Health and Human Sciences, College Lane, Hatfield, Herts AL10 9AB, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Rockwell CE, Snider NT, Thompson JT, Vanden Heuvel JP, Kaminski NE. Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor gamma independently of cannabinoid receptors 1 and 2. Mol Pharmacol 2006; 70:101-11. [PMID: 16611855 DOI: 10.1124/mol.105.019117] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative that binds cannabinoid receptors CB1 and CB2 and is hence termed an endocannabinoid. 2-AG also modulates a variety of immunological responses, including expression of the autocrine/paracrine T cell growth factor interleukin (IL)-2. The objective of the present studies was to determine the mechanism responsible for IL-2 suppression by 2-AG. Because of the labile properties of 2-AG, 2-AG ether, a nonhydrolyzable analog of 2-AG, was also used. Both 2-AG and 2-AG ether suppressed IL-2 expression independently of CB1 and CB2, as demonstrated in leukocytes derived from CB1/CB2-null mice. Moreover, we demonstrated that both 2-AG and 2-AG ether treatment activated peroxisome proliferator-activated receptor gamma (PPARgamma), as evidenced by forced differentiation of 3T3-L1 cells into adipocytes, induction of aP2 mRNA levels, and activation of a PPARgamma-specific luciferase reporter in transiently transfected 3T3-L1 cells. Consequently, the putative role of PPARgamma in IL-2 suppression by 2-AG and 2-AG ether was examined in Jurkat T cells. Concordant with PPARgamma involvement, the PPARgamma-specific antagonist 2-chloro-5-nitro-N-(4-pyridyl)-benzamide (T0070907) blocked 2-AG- and 2-AG ether-mediated IL-2 suppression. Likewise, 2-AG suppressed the transcriptional activity of two transcription factors crucial for IL-2 expression, nuclear factor of activated T cells and nuclear factor kappaB, in the absence but not in the presence of T0070907. 2-AG treatment also induced PPARgamma binding to a PPAR response element in activated Jurkat T cells. Together, the aforementioned studies identify PPARgamma as a novel intracellular target of 2-AG, which mediates the suppression of IL-2 by 2-AG in a manner that is independent of CB1 and/or CB2.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipogenesis/drug effects
- Animals
- Arachidonic Acids/chemistry
- Arachidonic Acids/pharmacology
- Benzamides/pharmacology
- Cells, Cultured
- Endocannabinoids
- Fatty Acid-Binding Proteins/genetics
- Female
- Gene Expression/drug effects
- Glycerides/chemistry
- Glycerides/pharmacology
- Humans
- Interferon-gamma/genetics
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/metabolism
- Interleukin-4/genetics
- Jurkat Cells
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- NFATC Transcription Factors/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptors/genetics
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Protein Binding/drug effects
- Pyridines/pharmacology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/physiology
- Response Elements/genetics
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, 315 National Food Safety and Toxicology Building, East Lansing, MI 48824-1317, USA
| | | | | | | | | |
Collapse
|
44
|
Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A, Shohami E. The endocannabinoid 2-AG protects the blood–brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 2006; 22:257-64. [PMID: 16364651 DOI: 10.1016/j.nbd.2005.11.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 11/03/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are involved in neuroprotection through numerous biochemical pathways. We have shown that the endocannabinoid 2-arachidonoyl glycerol (2-AG) is released in mouse brain after closed head injury (CHI), and treatment with exogenous 2-AG exerts neuroprotection via the central cannabinoid receptor CB1. This process involves inhibition of inflammatory signals that are mediated by activation of the transcription factor NF-kB. The present study was designed to examine the effect of 2-AG on the blood-brain barrier (BBB) and the possible inhibition of the early expression of proinflammatory cytokines, which are implicated in BBB disruption. We found that 2-AG decreased BBB permeability and inhibited the acute expression of the main proinflammatory cytokines: TNF-alpha, IL-1beta and IL-6. It also augmented the levels of endogenous antioxidants. We suggest that 2-AG exerts neuroprotection in part by inhibition of the early (1-4 h) inflammatory response and augmentation of the brain reducing power.
Collapse
Affiliation(s)
- David Panikashvili
- Department of Pharmacology, Faculty of Medicine, School of Pharmacy, The Hebrew University School of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Oka S, Wakui J, Gokoh M, Kishimoto S, Sugiura T. Suppression by WIN55212-2, a cannabinoid receptor agonist, of inflammatory reactions in mouse ear: Interference with the actions of an endogenous ligand, 2-arachidonoylglycerol. Eur J Pharmacol 2006; 538:154-62. [PMID: 16647054 DOI: 10.1016/j.ejphar.2006.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/02/2006] [Accepted: 03/13/2006] [Indexed: 01/21/2023]
Abstract
The effect of WIN55212-2, a cannabinoid receptor agonist, on acute inflammation of mouse ear was investigated. We found that topical application of WIN55212-2 suppressed ear swelling induced by 12-O-tetradecanoylphorbol 13-acetate or 2-arachidonoylglycerol. Similar inhibition was observed with CP55940, another cannabinoid receptor agonist, and HU-308, a cannabinoid CB(2) receptor-selective agonist. WIN55212-2 also suppressed the infiltration of leukocytes induced by 12-O-tetradecanoylphorbol 13-acetate. On the other hand, WIN55212-3, an inactive enantiomer of WIN55212-2, exerted only small effects on inflammation. Notably, SR144528, a cannabinoid CB(2) receptor antagonist, also suppressed inflammatory reactions in mouse ear. Thus, both the cannabinoid CB(2) receptor agonist and antagonist are capable of reducing inflammatory reactions. We then investigated the mechanism underlying WIN55212-2-induced suppression of inflammation using cultured cells. We found that the addition of WIN55212-2 together with 2-arachidonoylglycerol blocked 2-arachidonoylglycerol-induced migration of human promyelocytic leukemia HL-60 cells that had been differentiated into macrophage-like cells. The restoration of 2-arachidonoylglycerol-desensitized cells and WIN55212-2-desensitized cells from an anergic condition was examined next. We found that 2-arachidonoylglycerol-treated cells rapidly recovered the capacity to respond to 2-arachidonoylglycerol. On the other hand, the anergic condition toward 2-arachidonoylglycerol continued for a longer period after pretreatment with WIN55212-2. These results suggest that the anti-inflammatory activity of WIN55212-2 is attributable, at least in part, to interference with the actions of the endogenous ligand, 2-arachidonoylglycerol.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan
| | | | | | | | | |
Collapse
|
46
|
Lu T, Newton C, Perkins I, Friedman H, Klein TW. Role of cannabinoid receptors in Delta-9-tetrahydrocannabinol suppression of IL-12p40 in mouse bone marrow-derived dendritic cells infected with Legionella pneumophila. Eur J Pharmacol 2006; 532:170-7. [PMID: 16443217 DOI: 10.1016/j.ejphar.2005.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 02/02/2023]
Abstract
Delta-9-tetrahydrocannabinol (THC) injection suppresses serum interleukin-12 (IL-12) levels in Legionella pneumophila-infected mice. Dendritic cells are a major producer of IL-12 and mouse, bone marrow-derived dendritic cell cultures produced high levels of the IL-12p40 following L. pneumophila infection. Treatment with THC suppressed this cytokine response in a concentration-dependent manner and the endocannabinoid, 2-arachidonoyolglycerol, less potently suppressed cytokine production. Dendritic cells expressed mRNA for cannabinoid receptor 1 (CB(1)), cannabinoid CB(2) receptor, and vanilloid receptor 1 (TRPV1) and the addition of the G(i) inhibitor, pertussis toxin, completely attenuated suppression induced by 3 and 6 muM THC but not by 10 muM THC. Furthermore, THC suppression was partially attenuated in dendritic cells from cannabinoid CB(1) receptor and CB(2) receptor knockout mice and in dendritic cells co-treated with THC and cannabinoid receptor antagonists. Cytokine suppression was not attenuated by pretreatment with the TRPV1 antagonist, capsazepine. These results suggest that THC-induced suppression of serum IL-12 is partly due to a suppression of IL-12 production by dendritic cells and that G(i) signaling and cannabinoid receptors, but not TRPV1, are involved in this suppressive effect.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/microbiology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dendritic Cells/microbiology
- Dose-Response Relationship, Drug
- Dronabinol/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Gene Expression/drug effects
- Hallucinogens/pharmacology
- Interleukin-12/metabolism
- Legionella pneumophila/growth & development
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/physiology
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/physiology
Collapse
Affiliation(s)
- Tangying Lu
- Department of Medical Microbiology and Immunology, MDC 10 University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
47
|
Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiura T. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 2005; 579:6473-8. [PMID: 16288744 DOI: 10.1016/j.febslet.2005.10.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/29/2005] [Accepted: 10/12/2005] [Indexed: 01/21/2023]
Abstract
2-Arachidonoylglycerol (2-AG), an endogenous cannabionoid receptor (CB1 and CB2) ligand, enhanced the adhesion of HL-60 cells differentiated into macrophage-like cells to fibronectin and the vascular cell adhesion molecule-1. The CB2 receptor, Gi/Go, intracellular free Ca(2+) and phosphatidylinositol 3-kinase were shown to be involved in 2-AG-induced augmented cell adhesion. 2-AG also enhanced the adhesion of human monocytic leukemia U937 cells and peripheral blood monocytes. These results strongly suggest that 2-AG plays some essential role in inflammatory reactions and immune responses by inducing robust adhesion to extracellular matrix proteins and adhesion molecules in several types of inflammatory cells and immune-competent cells.
Collapse
Affiliation(s)
- Maiko Gokoh
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | | | | | | | | |
Collapse
|
48
|
Rao GK, Kaminski NE. Induction of intracellular calcium elevation by Δ9-tetrahydrocannabinol in T cells involves TRPC1 channels. J Leukoc Biol 2005; 79:202-13. [PMID: 16244107 DOI: 10.1189/jlb.0505274] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have reported previously that Delta9-tetrahydrocannabinol (Delta9-THC) treatment of resting human and murine splenic T cells robustly elevated intracellular calcium ([Ca2+]i). The objective of the present investigation was to examine the putative role of [Ca2+]i store depletion and store-operated calcium (SOC) and receptor-operated cation (ROC) channels in the mechanism by which Delta9-THC increases [Ca2+]i in the cannabinoid-2 receptor-expressing human peripheral blood-acute lymphoid leukemia (HPB-ALL) human T cell line. By using the smooth endoplasmic reticulum Ca2+-ATPase pump inhibitor, thapsigargin, and the ryanodine receptor antagonist, 8-bromo-cyclic adenosine diphosphate ribose, we demonstrate that the Delta9-THC-mediated elevation in [Ca2+]i occurs independently of [Ca2+]i store depletion. Furthermore, the ROC channel inhibitor, SK&F 96365 was more efficacious at attenuating the Delta9-THC-mediated elevation in [Ca2+]i than SOC channel inhibitors, 2-aminoethoxydiphenyl borate and La3+. Recently, several members of the transient receptor potential canonical (TRPC) channel subfamily have been suggested to operate as SOC or ROC channels. In the present studies, treatment of HPB-ALL cells with 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeant analog of diacylglycerol (DAG), which gates several members of the TRPC channel subfamily, rapidly elevated [Ca2+]i, as well as prevented a subsequent, additive elevation in [Ca2+]i by Delta9-THC, independent of protein kinase C. Reverse transcriptase-polymerase chain reaction analysis for TRPC1-7 showed that HPB-ALL cells express detectable mRNA levels of only TRPC1. Finally, small interference RNA knockdown of TRPC1 attenuated the Delta9-THC-mediated elevation of [Ca2+]i. Collectively, these results suggest that Delta9-THC-induced elevation in [Ca2+]i is attributable entirely to extracellular calcium influx, which is independent of [Ca2+]i store depletion, and is mediated, at least partially, through the DAG-sensitive TRPC1 channels.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|
49
|
Malfitano AM, Matarese G, Pisanti S, Grimaldi C, Laezza C, Bisogno T, Di Marzo V, Lechler RI, Bifulco M. Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis. J Neuroimmunol 2005; 171:110-9. [PMID: 16239036 DOI: 10.1016/j.jneuroim.2005.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 09/09/2005] [Indexed: 11/15/2022]
Abstract
This study examined the immunomodulatory effect of arvanil, a synthetic capsaicin-anandamide hybrid. Arvanil inhibits lymphocyte proliferation and IFN-gamma production. The phenotype of activated CD4+T cells treated with arvanil shows a down-regulation of T cell activation markers such as CD25, HLA-DR and CD134/OX40. Arvanil and anandamide do not induce apoptosis on CD4+T cells. Arvanil blocks the G1/S phase transition of the cell cycle in stimulated peripheral blood mononuclear cells, inducing activation of p21waf-1/cip-1 and phosphorylation of Akt/PKB. In vivo, arvanil ameliorates experimental autoimmune encephalomyelitis in the SJL/J mouse. Our findings have relevance for the use of arvanil and related compounds as a novel immunotherapeutic approach in the treatment of multiple sclerosis.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Blotting, Western/methods
- Body Weight/drug effects
- CD4-Positive T-Lymphocytes/drug effects
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/agonists
- Capsaicin/analogs & derivatives
- Capsaicin/chemistry
- Capsaicin/pharmacology
- Capsaicin/therapeutic use
- Cell Line
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Immunologic
- Drug Interactions
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Endocannabinoids
- Enzyme Activation/drug effects
- Female
- Flow Cytometry/methods
- Humans
- Leukocytes, Mononuclear/drug effects
- Lymphocyte Activation/drug effects
- Mice
- Myelin Proteolipid Protein/administration & dosage
- Peptide Fragments/administration & dosage
- Polyunsaturated Alkamides
- Proto-Oncogene Proteins c-akt/metabolism
- Statistics, Nonparametric
- Time Factors
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Farmaceutiche, Universita' di Salerno, Via Ponte don Melillo 84084 Fisciano (Salerno), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K, Ishima Y, Sugiura T. Evidence for the Involvement of the Cannabinoid CB2 Receptor and Its Endogenous Ligand 2-Arachidonoylglycerol in 12-O-Tetradecanoylphorbol-13-acetate-induced Acute Inflammation in Mouse Ear. J Biol Chem 2005; 280:18488-97. [PMID: 15749716 DOI: 10.1074/jbc.m413260200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors. Two types of cannabinoid receptors have been identified to date. The CB1 receptor is abundantly expressed in the brain, and assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, mainly expressed in several types of inflammatory cells and immunocompetent cells, have not yet been fully elucidated. In this study, we investigated possible pathophysiological roles of the CB2 receptor and 2-arachidonoylglycerol in acute inflammation in mouse ear induced by the topical application of 12-O-tetradecanoylphorbol-13-acetate. We found that the amount of 2-arachidonoylglycerol was markedly augmented in inflamed mouse ear. In contrast, the amount of anandamide, another endogenous cannabinoid receptor ligand, did not change markedly. Importantly, 12-O-tetradecanoylphorbol-13-acetate-induced ear swelling was blocked by treatment with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the swelling. On the other hand, the application of AM251, a CB1 receptor antagonist, exerted only a weak suppressive effect. The application of SR144528 also reduced the 12-O-tetradecanoylphorbol-13-acetate-induced production of leukotriene B(4) and the infiltration of neutrophils in the mouse ear. Interestingly, the application of 2-arachidonoylglycerol to the mouse ear evoked swelling, which was abolished by treatment with SR144528. Nitric oxide was suggested to be involved in the ear swelling induced by 2-arachidonoylglycerol. These results suggest that the CB2 receptor and 2-arachidonoylglycerol play crucial stimulative roles during the course of inflammatory reactions.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|