1
|
Ivković B, Opačić D, Džudović B, Crevar M, Gojković-Bukarica L. Antiarrhythmic effects of newly developed propafenone derivatives. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-37114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It is well known that the presence of different chemical groups in drug molecules influences their pharmacological properties. The aim of our study is to investigate whether newly synthesized derivatives of propafenone, with changes in benzyl moiety, have a different effect upon arrhythmia, compared to propafenone. 5OCl-PF and 5OF-PF are derivatives of propafenone with -Cl or -F substituent on the ortho position of the benzyl moiety. For verification of their antiarrhythmic effect, we used an in vivo rat model of aconitine-induced arrhythmia. 5OCl-PF speeded the appearance of supraventricular premature beats (SVPB) and death more than aconitine. All animals treated with 5OCl-PF developed ventricular premature beats in salvos (VPBS), bigeminies (VPBB) and paroxysmal ventricular tachycardia (PVT). 5OF-PF had a negative chronotropic effect and potentiated atrial excitability (more SVPB). It had a positive effect on the occurrence and onset time of supraventricular tachycardia, VPBS, and PVT. Based on the obtained results, it can be concluded that newly synthesized propafenone derivatives have no better antiarrhythmic effect than the parent compound. In the future, our research will be focused on the synthesis of different derivatives and examining their antiarrhythmic effects.
Collapse
|
2
|
Cheng N, Ren S, Yang JF, Liu XM, Li XT. Carvedilol blockage of delayed rectifier Kv2.1 channels and its molecular basis. Eur J Pharmacol 2019; 855:50-55. [PMID: 31063774 DOI: 10.1016/j.ejphar.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Previous studies indicated that one of the action targets of carvedilol is the voltage-gated potassium (Kv) channel, which has a fundamental role in the control of electrical properties in excitable cells. It is not clear whether this compound exerts any actions specifically on delayed rectifier Kv2.1 channels. The present study is conducted on Kv2.1 currents heterologously expressed in HEK293 cells to characterize the block by carvedilol in detail, identifying molecular determinants and providing biophysical insights of the block. Macroscopic Kv2.1 currents obtained by whole-cell recording were substantially inhibited after addition of carvedilol with an IC50 value of 5.1 μM. This drug also led to a largely hyperpolarizing shift (30 mV) of the inactivation curve, which may contribute to the blocking action due to more inactivation of Kv2.1 currents occurred in depolarization potentials. Mutations at Y380 (a putative TEA binding site) and K356 (a K+ binding site) in the outer vestibule of Kv2.1 channels significantly eliminated the inhibitory effects of carvedilol and prevented the leftward shift of inactivation. Moreover, mutations at above positions modulated the effects of carvedilol on the deactivation but not activation kinetics of Kv2.1 channels. Collected data indicate that carvedilol can exert a blocking effect on the closed-state of Kv2.1 channels, and specific residues within the S5-P and P-S6 linkers in the outer vestibule may play crucial roles in carvedilol-induced blocking for Kv2.1 channels.
Collapse
Affiliation(s)
- Neng Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jin-Feng Yang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiang-Ming Liu
- GongQing Institute of Science and Technology, Gongqing City, 332020, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
3
|
Herrington J, Solly K, Ratliff KS, Li N, Zhou YP, Howard A, Kiss L, Garcia ML, McManus OB, Deng Q, Desai R, Xiong Y, Kaczorowski GJ. Identification of novel and selective Kv2 channel inhibitors. Mol Pharmacol 2011; 80:959-64. [PMID: 21948463 DOI: 10.1124/mol.111.074831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification of selective ion channel inhibitors represents a critical step for understanding the physiological role that these proteins play in native systems. In particular, voltage-gated potassium (K(V)2) channels are widely expressed in tissues such as central nervous system, pancreas, and smooth muscle, but their particular contributions to cell function are not well understood. Although potent and selective peptide inhibitors of K(V)2 channels have been characterized, selective small molecule K(V)2 inhibitors have not been reported. For this purpose, high-throughput automated electrophysiology (IonWorks Quattro; Molecular Devices, Sunnyvale, CA) was used to screen a 200,000-compound mixture (10 compounds per sample) library for inhibitors of K(V)2.1 channels. After deconvolution of 190 active samples, two compounds (A1 and B1) were identified that potently inhibit K(V)2.1 and the other member of the K(V)2 family, K(V)2.2 (IC(50), 0.1-0.2 μM), and that possess good selectivity over K(V)1.2 (IC(50) >10 μM). Modeling studies suggest that these compounds possess a similar three-dimensional conformation. Compounds A1 and B1 are >10-fold selective over Na(V) channels and other K(V) channels and display weak activity (5-9 μM) on Ca(V) channels. The biological activity of compound A1 on native K(V)2 channels was confirmed in electrophysiological recordings of rat insulinoma cells, which are known to express K(V)2 channels. Medicinal chemistry efforts revealed a defined structure-activity relationship and led to the identification of two compounds (RY785 and RY796) without significant Ca(V) channel activity. Taken together, these newly identified channel inhibitors represent important tools for the study of K(V)2 channels in biological systems.
Collapse
Affiliation(s)
- James Herrington
- Department of Ion Channels, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Effects of diltiazem and propafenone on the inactivation and recovery kinetics of fKv1.4 channel currents expressed in Xenopus oocytes. Acta Pharmacol Sin 2011; 32:465-77. [PMID: 21468083 DOI: 10.1038/aps.2010.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the effects of diltiazem, an L-type calcium channel blocker, and propafenone, a sodium channel blocker, on the inactivation and recovery kinetics of fKv1.4, a potassium channel that generates the cardiac transient outward potassium current. METHODS The cRNA for fKv1.4ΔN, an N-terminal deleted mutant of the ferret Kv1.4 potassium channel, was injected into Xenopus oocytes to express the fKv1.4ΔN channel in these cells. Currents were recorded using a two electrode voltage clamp technique. RESULTS Diltiazem (10 to 1000 μmol/L) inhibited the fKv1.4ΔN channel in a frequency-dependent, voltage-dependent, and concentration-dependent manner, suggesting an open channel block. The IC(50) was 241.04±23.06 μmol/L for the fKv1.4ΔN channel (at +50 mV), and propafenone (10 to 500 μmol/L) showed a similar effect (IC(50)=103.68±10.13 μmol/L). After application of diltiazem and propafenone, fKv1.4ΔN inactivation was bi-exponential, with a faster drug-induced inactivation and a slower C-type inactivation. Diltiazem increased the C-type inactivation rate and slowed recovery in fKv1.4ΔN channels. However, propafenone had no effect on either the slow inactivation time constant or the recovery. CONCLUSION Diltiazem and propafenone accelerate the inactivation of the Kv1.4ΔN channel by binding to the open state of the channel. Unlike propafenone, diltiazem slows the recovery of the Kv1.4ΔN channel.
Collapse
|
5
|
Disease allele-dependent small-molecule sensitivities in blood cells from monogenic diabetes. Proc Natl Acad Sci U S A 2010; 108:492-7. [PMID: 21183721 DOI: 10.1073/pnas.1016789108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even as genetic studies identify alleles that influence human disease susceptibility, it remains challenging to understand their functional significance and how they contribute to disease phenotypes. Here, we describe an approach to translate discoveries from human genetics into functional and therapeutic hypotheses by relating human genetic variation to small-molecule sensitivities. We use small-molecule probes modulating a breadth of targets and processes to reveal disease allele-dependent sensitivities, using cells from multiple individuals with an extreme form of diabetes (maturity onset diabetes of the young type 1, caused by mutation in the orphan nuclear receptor HNF4α). This approach enabled the discovery of small molecules that show mechanistically revealing and therapeutically relevant interactions with HNF4α in both lymphoblasts and pancreatic β-cells, including compounds that physically interact with HNF4α. Compounds including US Food and Drug Administration-approved drugs were identified that favorably modulate a critical disease phenotype, insulin secretion from β-cells. This method may suggest therapeutic hypotheses for other nonblood disorders.
Collapse
|
6
|
Auranofin protects against anthrax lethal toxin-induced activation of the Nlrp1b inflammasome. Antimicrob Agents Chemother 2010; 55:1028-35. [PMID: 21149629 DOI: 10.1128/aac.00772-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthrax lethal toxin (LT) is the major virulence factor for Bacillus anthracis. The lethal factor (LF) component of this bipartite toxin is a protease which, when transported into the cellular cytoplasm, cleaves mitogen-activated protein kinase kinase (MEK) family proteins and induces rapid toxicity in mouse macrophages through activation of the Nlrp1b inflammasome. A high-throughput screen was performed to identify synergistic LT-inhibitory drug combinations from within a library of approved drugs and molecular probes. From this screen we discovered that auranofin, an organogold compound with anti-inflammatory activity, strongly inhibited LT-mediated toxicity in mouse macrophages. Auranofin did not inhibit toxin transport into cells or MEK cleavage but inhibited both LT-mediated caspase-1 activation and caspase-1 catalytic activity. Thus, auranofin inhibited LT-mediated toxicity by preventing activation of the Nlrp1b inflammasome and the downstream actions that occur in response to the toxin. Idebenone, an analog of coenzyme Q, synergized with auranofin to increase its protective effect. We found that idebenone functions as an inhibitor of voltage-gated potassium channels and thus likely mediates synergy through inhibition of the potassium fluxes which have been shown to be required for Nlrp1b inflammasome activation.
Collapse
|
7
|
Madeja M, Steffen W, Mesic I, Garic B, Zhorov BS. Overlapping binding sites of structurally different antiarrhythmics flecainide and propafenone in the subunit interface of potassium channel Kv2.1. J Biol Chem 2010; 285:33898-905. [PMID: 20709754 DOI: 10.1074/jbc.m110.159897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kv2.1 channels, which are expressed in brain, heart, pancreas, and other organs and tissues, are important targets for drug design. Flecainide and propafenone are known to block Kv2.1 channels more potently than other Kv channels. Here, we sought to explore structural determinants of this selectivity. We demonstrated that flecainide reduced the K(+) currents through Kv2.1 channels expressed in Xenopus laevis oocytes in a voltage- and time-dependent manner. By systematically exchanging various segments of Kv2.1 with those from Kv1.2, we determined flecainide-sensing residues in the P-helix and inner helix S6. These residues are not exposed to the inner pore, a conventional binding region of open channel blockers. The flecainide-sensing residues also contribute to propafenone binding, suggesting overlapping receptors for the drugs. Indeed, propafenone and flecainide compete for binding in Kv2.1. We further used Monte Carlo-energy minimizations to map the receptors of the drugs. Flecainide docking in the Kv1.2-based homology model of Kv2.1 predicts the ligand ammonium group in the central cavity and the benzamide moiety in a niche between S6 and the P-helix. Propafenone also binds in the niche. Its carbonyl group accepts an H-bond from the P-helix, the amino group donates an H-bond to the P-loop turn, whereas the propyl group protrudes in the pore and blocks the access to the selectivity filter. Thus, besides the binding region in the central cavity, certain K(+) channel ligands can expand in the subunit interface whose residues are less conserved between K(+) channels and hence may be targets for design of highly desirable subtype-specific K(+) channel drugs.
Collapse
Affiliation(s)
- Michael Madeja
- Institute of Physiology, University of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
8
|
Frolov RV, Bondarenko VE, Singh S. Mechanisms of Kv2.1 channel inhibition by celecoxib--modification of gating and channel block. Br J Pharmacol 2009; 159:405-18. [PMID: 20015088 DOI: 10.1111/j.1476-5381.2009.00539.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective cyclooxygenase-2 (COX-2) inhibitors such as rofecoxib (Vioxx) and celecoxib (Celebrex) were developed as NSAIDs with reduced gastric side effects. Celecoxib has now been shown to affect cellular physiology via an unexpected, COX-independent, pathway - by inhibiting K(v)2.1 and other ion channels. In this study, we investigated the mechanism of the action of celecoxib on K(v)2.1 channels. EXPERIMENTAL APPROACH The mode of action of celecoxib on rat K(v)2.1 channels was studied by whole-cell patch-clamping to record currents from channels expressed in HEK-293 cells. KEY RESULTS Celecoxib reduced current through K(v)2.1 channels when applied from the extracellular side. At low concentrations (<or=3 microM), celecoxib accelerated kinetics of activation, deactivation and inactivation. Recovery of rat K(v)2.1 channels from inactivation could be characterized by two components, with celecoxib selectively accelerating the slow component of recovery at <or=10 microM. At >3 microM, celecoxib led to closed-channel block with relative slowing of activation. At 30 microM, it additionally induced open-channel block that manifested in use-dependent inhibition and slower recovery from inactivation. CONCLUSIONS AND IMPLICATIONS Celecoxib reduced current through K(v)2.1 channels by modifying gating and inducing closed- and open-channel block, with the three effects manifesting at different concentrations. These data will help to elucidate the mechanisms of action of this widely prescribed drug on ion channels and those underlying its neurological, cardiovascular and other effects.
Collapse
Affiliation(s)
- R V Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
9
|
Wang Z, Wang S, Li J, Jiang X, Wang N. Regulation of antiarrhythmic drug propafenone effects on the c-type Kv1.4 potassium channel by PHo and K+. J Korean Med Sci 2009; 24:84-91. [PMID: 19270818 PMCID: PMC2650976 DOI: 10.3346/jkms.2009.24.1.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 07/07/2008] [Indexed: 11/20/2022] Open
Abstract
The effects of the antiarrhythmic drug propafenone at c-type kv1.4 channels in Xenopus laevis oocytes were studied with the two-electrode voltage-clamp technique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4 Delta N channels. During recording, oocytes were continuously perfused with control solution or propafenone. Propafenone decreased the currents during voltage steps. The block was voltage-, use-, and concentration- dependent manners. The block was increased with positive going potentials. The voltage dependence of block could be fitted with the sum of monoexponential and a linear function. Propafenone accelerated the inactivate of current during the voltage step. The concentration of half-maximal block (IC(50)) was 121 microM/L. With high, normal, and low extracellular potassium concentrations, the changes of IC(50) value had no significant statistical differences. The block of propafenone was PH- dependent in high-, normal- and low- extracellular potassium concentrations. Acidification of the extracellular solution to PH 6.0 increased the IC(50) values to 463 microM/L, alkalization to PH 8.0 reduced it to 58 microM/L. The results suggest that propafenone blocks the Kv1.4 Delta N channel in the open state and give some hints for an intracellular site of action.
Collapse
Affiliation(s)
- Zhiquan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | | | | | | | | |
Collapse
|
10
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
11
|
Tikhonov DB, Zhorov BS. Molecular modeling of benzothiazepine binding in the L-type calcium channel. J Biol Chem 2008; 283:17594-604. [PMID: 18397890 DOI: 10.1074/jbc.m800141200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
12
|
Zhorov BS, Tikhonov DB. Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem 2004; 88:782-99. [PMID: 14756799 DOI: 10.1111/j.1471-4159.2004.02261.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last decade, the idea of common organization of certain ion channel families exhibiting diverse physiological and pharmacological properties has received strong experimental support. Transmembrane topologies and patterns of the pore-facing residues are conserved in P-loop channels that include high-selective cation channels and certain ligand-gated channels. X-ray structures of bacterial K+ channels, KcsA, MthK and KvAP, help to understand structure-function relationships of other P-loop channels. Data on binding sites and mechanisms of action of ligands of K+, Na+, Ca2+ and glutamate gated ion channels are considered in view of their possible structural similarity to the bacterial K+ channels. Emphasized are structural determinants of ligand-receptor interactions within the channels and mechanisms of state-dependent action of the ligands.
Collapse
Affiliation(s)
- Boris S Zhorov
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
13
|
Koh JT, Jeong BC, Kim JH, Ahn YK, Lee HS, Baik YH, Kim KK. Changes underlying arrhythmia in the transgenic heart overexpressing Refsum disease gene-associated protein. Biochem Biophys Res Commun 2004; 313:156-62. [PMID: 14672712 DOI: 10.1016/j.bbrc.2003.11.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously, we identified a novel neuron-specific protein (PAHX-AP1) that binds to Refsum disease gene product (PAHX), and we developed transgenic (TG) mice that overexpress heart-targeted PAHX-AP1. These mice have atrial tachycardia and increased susceptibility to aconitine-induced arrhythmia. This study was undertaken to elucidate the possible changes in ion channels underlying the susceptibility to arrhythmia in these mice. RT-PCR analyses revealed that the cardiac expression of adrenergic beta(1)-receptor (ADRB1) was markedly lower, whereas voltage-gated potassium channel expression (Kv2.1) was higher in PAHX-AP1 TG mice compared with non-TG mice. However, the expression of voltage-sensitive sodium and calcium channels, and muscarinic receptor was not significantly different. Propranolol pretreatment, a non-specific beta-adrenoceptor antagonist, blocked aconitine-induced arrhythmia in non-TG mice, but not in PAHX-AP1 TG mice. Our results indicate that, in the PAHX-AP1 TG heart, the modulation of voltage-gated potassium channel and ADRB1 expression seem to be important in the electrophysiological changes associated with altered ion channel functions, but ADRB1 is not involved in the greater susceptibility to aconitine-induced arrhythmia.
Collapse
Affiliation(s)
- Jeong Tae Koh
- Dental Science Research Institute, Chonnam National University, Kwangju 501-190, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|