1
|
Peng C, Vecchio EA, Nguyen ATN, De Seram M, Tang R, Keov P, Woodman OL, Chen YC, Baell J, May LT, Zhao P, Ritchie RH, Qin CX. Biased receptor signalling and intracellular trafficking profiles of structurally distinct formylpeptide receptor 2 agonists. Br J Pharmacol 2024; 181:4677-4692. [PMID: 39154373 DOI: 10.1111/bph.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. EXPERIMENTAL APPROACH Concentration-response curves to G protein dissociation, β-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. KEY RESULTS Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from β-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. CONCLUSION AND IMPLICATIONS In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mia De Seram
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Ruby Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter Keov
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Yung-Chih Chen
- Monash Victorian Heart Institute, Blackburn Road Clayton, Monash University, Melbourne, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Vitoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals (Basel) 2022; 15:ph15020161. [PMID: 35215274 PMCID: PMC8875614 DOI: 10.3390/ph15020161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by social deficits, repetitive stereotyped behaviors, and altered inflammatory responses. Accordingly, children with ASD show decreased plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation, which is the endogenous ligand of the formyl peptide receptor 2 (FPR2). To investigate the role of FPR2 in ASDs, we have used a new ureidopropanamide derivative able to activate the receptor, named MR-39. The effects of MR-39 (10 mg/kg, for 8 days) on hippocampal pro-inflammatory profile, neuronal plasticity, and social behavior were evaluated in two validated animal models of ASD: BTBR mouse strain and mice prenatally exposed to valproic acid (VPA). Primary cultures of hippocampal neurons from BTBR mice were also used to evaluate the effect of MR-39 on neurite elongation. Our results show that MR-39 treatment reduced several inflammatory markers, restored the low expression of LXA4, and modulated FPR2 expression in hippocampal tissues of both ASD animal models. These findings were accompanied by a significant positive effect of MR-39 on social behavioral tests of ASD mice. Finally, MR-39 stimulates neurite elongation in isolated hippocampal neurons of BTBR mice. In conclusion, these data indicate FPR2 as a potential target for an innovative therapeutical approach for the cure of ASD.
Collapse
|
3
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
4
|
Park B, Lee M, Kim SD, Jeong YS, Kim JC, Yang S, Kim HY, Bae YS. Activation of formyl peptide receptor 1 elicits therapeutic effects against collagen-induced arthritis. J Cell Mol Med 2021; 25:8936-8946. [PMID: 34378309 PMCID: PMC8435430 DOI: 10.1111/jcmm.16854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder which shows production of autoantibodies, inflammation, bone erosion, swelling and pain in joints. In this study, we examined the effects of an immune-modulating peptide, WKYMVm, that is an agonist for formyl peptide receptors (FPRs). Administration of WKYMVm into collagen-induced arthritis (CIA) mice, an animal model for RA, attenuated paw thickness, clinical scores, production of type II collagen-specific antibodies and inflammatory cytokines. WKYMVm treatment also decreased the numbers of TH 1 and TH 17 cells in the spleens of CIA mice. WKYMVm attenuated TH 1 and TH 17 differentiation in a dendritic cell (DC)-dependent manner. WKYMVm-induced beneficial effects against CIA and WKYMVm-attenuated TH 1 and TH 17 differentiation were reversed by cyclosporin H but not by WRW4, indicating a crucial role of FPR1. We also found that WKYMVm augmented IL-10 production from lipopolysaccharide-stimulated DCs and WKYMVm failed to suppress TH 1 and TH 17 differentiation in the presence of anti-IL-10 antibody. The therapeutic administration of WKYMVm also elicited beneficial outcome against CIA. Collectively, we demonstrate that WKYMVm stimulation of FPR1 in DCs suppresses the generation of TH 1 and TH 17 cells via IL-10 production, providing novel insight into the function of FPR1 in regulating CIA pathogenesis.
Collapse
Affiliation(s)
- Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sang Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
5
|
The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Exhibits Anti-Inflammatory Activity in LPS-Stimulated Organotypic Hippocampal Cultures. Cells 2021; 10:cells10061524. [PMID: 34204273 PMCID: PMC8235773 DOI: 10.3390/cells10061524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2−/− mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS). Higher LPS-induced cytokine expression and basal release were observed in KO FPR2 cultures than in WT cultures, suggesting that a lack of FPR2 enhances the OHCs response to inflammatory stimuli. Pretreatment with MR-39 abolished some of the LPS-induced changes in the expression of genes related to the M1/M2 phenotypes (including Il-1β, Il-6, Arg1, Il-4, Cd74, Fizz and Cx3cr1) and TNF-α, IL-1β and IL-4 release in tissue derived from WT but not KO mice. Receptor specificity was confirmed by adding the FPR2 antagonist WRW4, which abolished the abovementioned effects of MR-39. Further biochemical data showed an increase in the phospho-p65/total p65 ratio after LPS stimulation in hippocampal tissues from both WT and KO mice, and MR-39 only reversed this effect on WT OHCs. LPS also increased TRAF6 levels, which are critical for the TLR4-mediated NF-κB pro-inflammatory responses. MR-39 attenuated the LPS-evoked increase in the levels of the NLRP3 and caspase-1 proteins in WT but not KO hippocampal cultures. Since NLRP3 may be involved in the pyroptosis, a lytic type of programmed cell death in which the main role is played by Gasdermin D (GSDMD), we examined the effects of LPS and/or MR-39 on the GSDMD protein level. LPS only increased GSDMD production in the WT tissues, and this effect was ameliorated by MR-39. Collectively, this study indicates that the new FPR2 agonist efficiently abrogates LPS-induced neuroinflammation in an ex vivo model, as evidenced by a decrease in pro-inflammatory cytokine expression and release as well as the downregulation of NLRP3 inflammasome-related pathways.
Collapse
|
6
|
The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int J Mol Sci 2021; 22:ijms22073706. [PMID: 33918194 PMCID: PMC8038163 DOI: 10.3390/ijms22073706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Formyl peptide receptors (FPRs) are cell surface pattern recognition receptors (PRRs), belonging to the chemoattractant G protein-coupled receptors (GPCRs) family. They play a key role in the innate immune system, regulating both the initiation and the resolution of the inflammatory response. FPRs were originally identified as receptors with high binding affinity for bacteria or mitochondria N-formylated peptides. However, they can also bind a variety of structurally different ligands. Among FPRs, formyl peptide receptor-like 1 (FPRL1) is the most versatile, recognizing N-formyl peptides, non-formylated peptides, and synthetic molecules. In addition, according to the ligand nature, FPRL1 can mediate either pro- or anti-inflammatory responses. Hp(2-20), a Helicobacter pylori-derived, non-formylated peptide, is a potent FPRL1 agonist, participating in Helicobacter pylori-induced gastric inflammation, thus contributing to the related site or not-site specific diseases. The aim of this review is to provide insights into the role of FPRs in H. pylori-associated chronic inflammation, which suggests this receptor as potential target to mitigate both microbial and sterile inflammatory diseases.
Collapse
|
7
|
Park MY, Kim HS, Lee HY, Zabel BA, Bae YS. Novel CD11b +Gr-1 +Sca-1 + myeloid cells drive mortality in bacterial infection. SCIENCE ADVANCES 2020; 6:eaax8820. [PMID: 32010784 PMCID: PMC6976299 DOI: 10.1126/sciadv.aax8820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Extreme pathophysiological stressors induce expansion of otherwise infrequent leukocyte populations. Here, we found a previously unidentified CD11b+Gr-1+ myeloid cell population that expresses stem cell antigen-1 (Sca-1) induced upon experimental infection with Staphylococcus aureus. Although CD11b+Gr-1+Sca-1+ cells have impaired migratory capacity and superoxide anion-producing activity, they secrete increased levels of several cytokines and chemokines compared to Sca-1- counterparts. The generation of CD11b+Gr-1+Sca-1+ cells is dependent on IFN-γ in vivo, and in vitro stimulation of bone marrow cells or granulocyte-macrophage progenitors with IFN-γ generated CD11b+Gr-1+Sca-1+ cells. Depletion of CD11b+Gr-1+Sca-1+ cells by administrating anti-Sca-1 antibody strongly increased survival rates in an S. aureus infection model by reducing organ damage and inflammatory cytokines. However, adoptive transfer of CD11b+Gr-1+Sca-1+ cells decreased survival rates by worsening the pathogenesis of S. aureus infection. Together, we found a previously unidentified pathogenic CD11b+Gr-1+Sca-1+ population that plays an essential role in mortality during bacterial infection.
Collapse
Affiliation(s)
- Min Young Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Brian A. Zabel
- Palo Alto Veterans Institute for Research, Veterans Affairs Hospital, Palo Alto, CA 94304, USA
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| |
Collapse
|
8
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Park YJ, Park B, Lee M, Jeong YS, Lee HY, Sohn DH, Song JJ, Lee JH, Hwang JS, Bae YS. A novel antimicrobial peptide acting via formyl peptide receptor 2 shows therapeutic effects against rheumatoid arthritis. Sci Rep 2018; 8:14664. [PMID: 30279454 PMCID: PMC6168567 DOI: 10.1038/s41598-018-32963-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
In oriental medicine, centipede Scolopendra subspinipes mutilans has long been used as a remedy for rheumatoid arthritis (RA), a well-known chronic autoimmune disorder. However, the molecular identities of its bioactive components have not yet been extensively investigated. We sought to identify bioactive molecules that control RA with a centipede. A novel antimicrobial peptide (AMP) (scolopendrasin IX) was identified from Scolopendra subspinipes mutilans. Scolopendrasin IX markedly activated mouse neutrophils, by enhancing cytosolic calcium increase, chemotactic cellular migration, and generation of superoxide anion in neutrophils. As a target receptor for scolopendrasin IX, formyl peptide receptor (FPR)2 mediates neutrophil activation induced by the AMP. Furthermore, scolopendrasin IX administration strongly blocked the clinical phenotype of RA in an autoantibody-injected model. Mechanistically, the novel AMP inhibited inflammatory cytokine synthesis from the joints and neutrophil recruitment into the joint area. Collectively, we suggest that scolopendrasin IX is a novel potential therapeutic agent for the control of RA via FPR2.
Collapse
MESH Headings
- Animals
- Antimicrobial Cationic Peptides/chemical synthesis
- Antimicrobial Cationic Peptides/pharmacology
- Antimicrobial Cationic Peptides/therapeutic use
- Antirheumatic Agents/chemical synthesis
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthropods
- Autoantibodies/administration & dosage
- Autoantibodies/blood
- Cells, Cultured
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- Injections, Subcutaneous
- Insect Proteins/chemical synthesis
- Insect Proteins/pharmacology
- Insect Proteins/therapeutic use
- Male
- Mice
- Mice, Transgenic
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Primary Cell Culture
- Receptors, Formyl Peptide/immunology
- Receptors, Formyl Peptide/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, 50612, Korea
| | - Jason Jungsik Song
- Department of Internal Medicine, Division of Rheumatology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, 55365, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
10
|
Kim HS, Park MY, Lee SK, Park JS, Lee HY, Bae YS. Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity. BMB Rep 2018. [PMID: 30021674 PMCID: PMC6130828 DOI: 10.5483/bmbrep.2018.51.8.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, Lin−c-kit+Sca-1− cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Min Young Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Present address: Institute for Stem Cell & Regenerative Medicine Research of Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
11
|
Park YJ, Lee SK, Jung YS, Lee M, Lee HY, Kim SD, Park JS, Koo J, Hwang JS, Bae YS. Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans. BMB Rep 2017; 49:520-5. [PMID: 27502013 PMCID: PMC5227146 DOI: 10.5483/bmbrep.2016.49.9.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation. [BMB Reports 2016; 49(9): 520-525]
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Young Su Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
12
|
Park YJ, Lee HY, Jung YS, Park JS, Hwang JS, Bae YS. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep 2016; 48:479-84. [PMID: 26129676 PMCID: PMC4576957 DOI: 10.5483/bmbrep.2015.48.8.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 01/09/2023] Open
Abstract
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419; Mitochondria Hub Regulation Center, Dong-A University, Busan 49201, Korea
| | - Young Su Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419; Mitochondria Hub Regulation Center, Dong-A University, Busan 49201; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
13
|
Yousif AM, Minopoli M, Bifulco K, Ingangi V, Di Carluccio G, Merlino F, Motti ML, Grieco P, Carriero MV. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr Peptide generates a potent inhibitor of trans-endothelial migration of monocytes. PLoS One 2015; 10:e0126172. [PMID: 25938482 PMCID: PMC4418665 DOI: 10.1371/journal.pone.0126172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility. We and others have previously documented that the uPAR88-92 sequence, even in the form of synthetic linear peptide (SRSRY), interacts with the formyl peptide receptor type 1 (FPR1), henceforth inducing cell migration of several cell lines, including monocytes. FPR1 is mainly expressed by mammalian phagocytic leukocytes and plays a crucial role in chemotaxis. In this study, we present evidence that the cyclization of the SRSRY sequence generates a new potent and stable inhibitor of monocyte trafficking. In rat basophilic leukaemia RBL-2H3/ETFR cells expressing high levels of constitutively activated FPR1, the cyclic SRSRY peptide ([SRSRY]) blocks FPR1 mediated cell migration by interfering with both internalization and ligand-uptake of FPR1. Similarly to RBL-2H3/ETFR cells, [SRSRY] competes with fMLF for binding to FPR1 and prevents agonist-induced FPR1 internalization in human monocyte THP-1 cells. Unlike scramble [RSSYR], [SRSRY] inhibits fMLF-directed migration of monocytes in a dose-dependent manner, with IC50 value of 0.01 nM. PMA-differentiated THP-1 cell exposure to fMLF gradient causes a marked cytoskeletal re-organization with the formation of F-actin rich pseudopodia that are prevented by the addition of [SRSRY]. Furthermore, [SRSRY] prevents migration of human primary monocytes and trans-endothelial migration of monocytes. Our findings indicate that [SRSRY] is a new FPR1 inhibitor which may suggest the development of new drugs for treating pathological conditions sustained by increased motility of monocytes, such as chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Michele Minopoli
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Katia Bifulco
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Vincenzo Ingangi
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
- SUN Second University of Naples, Italy
| | - Gioconda Di Carluccio
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | | | | | - Paolo Grieco
- Department of Pharmacy, University Federico II, Naples, Italy
- CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging—CNR, 80134, Naples, Italy
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Department of Experimental Oncology, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
14
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
A novel delivery platform for therapeutic peptides. Biochem Biophys Res Commun 2014; 450:13-8. [DOI: 10.1016/j.bbrc.2014.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
|
16
|
Kim SD, Kwon S, Lee SK, Kook M, Lee HY, Song KD, Lee HK, Baek SH, Park CB, Bae YS. The immune-stimulating peptide WKYMVm has therapeutic effects against ulcerative colitis. Exp Mol Med 2013; 45:e40. [PMID: 24030327 PMCID: PMC3789265 DOI: 10.1038/emm.2013.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined the therapeutic effects of an immune-stimulating peptide, WKYMVm, in ulcerative colitis. The administration of WKYMVm to dextran sodium sulfate (DSS)-treated mice reversed decreases in body weight, bleeding score and stool score in addition to reversing DSS-induced mucosa destruction and shortened colon. The WKYMVm-induced therapeutic effect against ulcerative colitis was strongly inhibited by a formyl peptide receptor (FPR) 2 antagonist, WRWWWW, indicating the crucial role of FPR2 in this effect. Mechanistically, WKYMVm effectively decreases intestinal permeability by stimulating colon epithelial cell proliferation. WKYMVm also strongly decreases interleukin-23 and transforming growth factor-β production in the colon of DSS-treated mice. We suggest that the potent immune-modulating peptide WKYMVm and its receptor FPR2 may be useful in the development of efficient therapeutic agents against chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Sang Doo Kim
- 1] Department of Biological Science, Sungkyunkwan University, Suwon, Korea [2] Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jung YS, Lee SK, Ok CY, Cho EJ, Park JS, Choi YW, Bae YS. Role of CXCR2 on the immune modulating activity of α-iso-cubebenol a natural compound isolated from the Schisandra chinensis fruit. Biochem Biophys Res Commun 2013; 431:433-6. [DOI: 10.1016/j.bbrc.2012.12.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/23/2012] [Indexed: 01/15/2023]
|
18
|
Hayashi R, Miyazaki M, Osada S, Kawasaki H, Fujita I, Hamasaki Y, Kodama H. A formyl peptide substituted with a conformationally constrained phenylalanine residue evokes a selective immune response in human neutrophils. Bioorg Med Chem 2013; 21:668-75. [DOI: 10.1016/j.bmc.2012.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
19
|
Arterburn JB, Oprea TI, Prossnitz ER, Edwards BS, Sklar LA. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30. Curr Top Med Chem 2010; 9:1227-36. [PMID: 19807662 DOI: 10.2174/156802609789753608] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 01/04/2023]
Abstract
Recent technological advances in flow cytometry provide a versatile platform for high throughput screening of compound libraries coupled with high-content biological testing and drug discovery. The G protein-coupled receptors (GPCRs) constitute the largest class of signaling molecules in the human genome with frequent roles in disease pathogenesis, yet many examples of orphan receptors with unknown ligands remain. The complex biology and potential for drug discovery within this class provide strong incentives for chemical biology approaches seeking to develop small molecule probes to facilitate elucidation of mechanistic pathways and enable specific manipulation of the activity of individual receptors. We have initiated small molecule probe development projects targeting two distinct families of GPCRs: the formylpeptide receptors (FPR/FPRL1) and G protein-coupled estrogen receptor (GPR30). In each case the assay for compound screening involved the development of an appropriate small molecule fluorescent probe, and the flow cytometry platform provided inherently biological rich assays that enhanced the process of identification and optimization of novel antagonists. The contributions of cheminformatics analysis tools, virtual screening, and synthetic chemistry in synergy with the biomolecular screening program have yielded valuable new chemical probes with high binding affinity, selectivity for the targeted receptor, and potent antagonist activity. This review describes the discovery of novel small molecule antagonists of FPR and FPRL1, and GPR30, and the associated characterization process involving secondary assays, cell based and in vivo studies to define the selectivity and activity of the resulting chemical probes.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | |
Collapse
|
20
|
Lee HY, Kim SD, Shim JW, Kim HJ, Kwon JY, Kim JM, Baek SH, Park JS, Bae YS. Activation of human monocytes by a formyl peptide receptor 2-derived pepducin. FEBS Lett 2010; 584:4102-8. [DOI: 10.1016/j.febslet.2010.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
|
21
|
Cilibrizzi A, Quinn MT, Kirpotina LN, Schepetkin IA, Holderness J, Ye RD, Rabiet MJ, Biancalani C, Cesari N, Graziano A, Vergelli C, Pieretti S, Dal Piaz V, Giovannoni MP. 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones: a novel class of small-molecule agonists for formyl peptide receptors. J Med Chem 2010; 52:5044-57. [PMID: 19639995 DOI: 10.1021/jm900592h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC(50) = 0.6 microM) was the mixed FPR/FPRL1 agonist 14h.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino 50019 Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim SD, Kim JM, Jo SH, Lee HY, Lee SY, Shim JW, Seo SK, Yun J, Bae YS. Functional expression of formyl peptide receptor family in human NK cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5511-7. [PMID: 19843937 DOI: 10.4049/jimmunol.0802986] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined the expression of the formyl peptide receptor (FPR) family and the functional roles of the FPR family in NK cells. All tested human NK cells express two members of the FPR family (FPR1 and FPR2). The expression of FPR3 was noted to occur in a donor-specific manner. The stimulation of NK cells with FPR family-selective agonists (fMLF (N-formyl-Met-Leu-Phe), MMK-1, F2L, and WKYMVm (Trp-Lys-Tyr-Met-Val-d-Met)) elicited cytolytic activity in resting NK cells, but not in IL-2-activated NK cells; the cytolytic activity was not inhibited by pertussis toxin. The FPR family agonists also stimulated chemotactic migration of IL-2-activated NK cells, but not resting NK cells; the chemotactic migration was completely inhibited by pertussis toxin. WKYMVm stimulates ERK, p38 MAPK, and JNK activities in both resting and IL-2-activated NK cells. WKYMVm-induced chemotactic migration was partially inhibited by PD98059 (2'-amino-3'-methoxyflavone); however, the inhibition of JNK by its selective inhibitor (SP600125, anthra[1,9-cd]pyrazol-6(2H)-one) dramatically inhibited the WKYMVm-induced cytolytic activity. Furthermore, WKYMVm-induced chemotactic migration and cytolytic activity were partly inhibited by FPR family-selective antagonists (cyclosporin H and WRWWWW). Taken together, our findings indicate that human NK cells express functional members of the FPR family, and in turn the activation of the three members of the FPR receptor family elicit cytolytic activity in NK cells, thus suggesting that the receptors are potentially important therapeutic targets for the modulation of NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Sang Doo Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Strouse JJ, Young SM, Mitchell HD, Ye RD, Prossnitz ER, Sklar LA, Edwards BS. A novel fluorescent cross-reactive formylpeptide receptor/formylpeptide receptor-like 1 hexapeptide ligand. Cytometry A 2009; 75:264-70. [PMID: 19006074 DOI: 10.1002/cyto.a.20670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formylpeptide receptors (FPRs) are implicated in a variety of immunological and inflammatory response cascades. Further understanding of FPR-family ligand interactions could play an integral role in biological and therapeutic discovery. Fluorescent reporter ligands for the family are desirable experimental tools for increased understanding of ligand/receptor interactions. The ligand binding affinity and fluorescent reporting activity of the peptide WK(FL)YMVm was explored though use of the high throughput HyperCyt flow cytometric platform. Relative binding affinities of several known FPR and FPRL1 peptide ligands were compared in a duplex assay format. The fluorescent W-peptide ligand, WK(FL)YMVm, proved to be a high-affinity, cross-reactive reporter ligand for the FPR/FPRL1 duplex assay. Ligand specificity was demonstrated for each receptor, with known, selective peptide ligands. The binding site specificity of the reporter ligand was further verified by a fluorescent confocal microscopy internalization experiment. The fluorescent peptide ligand WK(FL)YMVm binds with high affinity to both FPR and FPRL1. The differential affinities of known peptide ligands were observed with the use of this fluorescent probe in high throughput screening flow cytometry.
Collapse
Affiliation(s)
- J Jacob Strouse
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, 87131, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Oh EJ, Kim JW, Kong JH, Ryu SH, Hahn SK. Signal transduction of hyaluronic acid-peptide conjugate for formyl peptide receptor like 1 receptor. Bioconjug Chem 2009; 19:2401-8. [PMID: 19007292 DOI: 10.1021/bc800255y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agonistic and antagonistic peptides for formyl peptide receptor like 1 (FPRL1) receptor have been investigated as novel drug candidates for inflammatory diseases such as sepsis, asthma, and rheumatoid arthritis. In this work, a novel protocol for the synthesis of hyaluronic acid (HA)-peptide (CWRYMVm) conjugate for FPRL1 receptor was successfully developed for further clinical applications of peptide drugs. Aminoethyl methacrylated HA (HAAEMA) was synthesized by the coupling reaction of tetrabutyl ammonium salt of HA (HA-TBA) and AEMA using benzotriazol-1-yloxy-tris(dimethylamino) phosphonium hexafluorophosphate (BOP) in dimethyl sulfoxide (DMSO). Then, HA-AEMA was conjugated with CWRYMVm in water via Michael addition reaction between methacrylate group of HA-AEMA and thiol group in cysteine. The formation of HA-peptide conjugate was confirmed by 1H NMR and gel permeation chromatography (GPC). The average number of conjugated peptide molecules could be controlled from 5 to 23 per single HA chain. The HA-peptide conjugate showed serum stability longer than four days. In Vitro signal transduction activity of the HA-peptide conjugate for FPRL1 receptor was confirmed from the elevated levels of phospho-extracellular signal-regulated kinase (pERK) and calcium ion in FPRL1 overexpressing RBL-2H3 cells. The partially decreased biological activity of HA-peptide conjugates by the steric hindrance of HA was recovered after its degradation by hyaluronidase treatment.
Collapse
Affiliation(s)
- Eun Ju Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
25
|
Edwards BS, Young SM, Ivnitsky-Steele I, Ye RD, Prossnitz ER, Sklar LA. High-content screening: flow cytometry analysis. Methods Mol Biol 2009; 486:151-65. [PMID: 19347622 DOI: 10.1007/978-1-60327-545-3_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The HyperCyt high-throughput (HT) flow cytometry sampling platform uses a peristaltic pump, in combination with an autosampler, and a novel approach to data collection, to circumvent time-delay bottlenecks of conventional flow cytometry. This approach also dramatically reduces the amount of sample aspirated for each analysis, typically requiring ~2 microL per sample while making quantitative fluorescence measurements of 40 or more samples per minute with thousands to tens of thousands of cells in each sample. Here, we describe a simple robust screening assay that exploits the high-content measurement capabilities of the flow cytometer to simicroltaneously probe the binding of test compounds to two different receptors in a common assay volume, a duplex assay format. The ability of the flow cytometer to distinguish cell-bound from free fluorophore is also exploited to eliminate wash steps during assay setup. HT flow cytometry with this assay has allowed efficient screening of tens of thousands of small molecules from the NIH Small-Molecule Repository to identify selective ligands for two related G-protein-coupled receptors, the formylpeptide receptor and formylpeptide receptor-like 1.
Collapse
Affiliation(s)
- Bruce S Edwards
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Li YS, Wu P, Zhou XY, Chen JG, Cai L, Wang F, Xu LM, Zhang XL, Chen Y, Liu SJ, Huang YP, Ye DY. Formyl-peptide receptor like 1: A potent mediator of the Ca2+ release-activated Ca2+ current ICRAC. Arch Biochem Biophys 2008; 478:110-8. [DOI: 10.1016/j.abb.2008.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 06/28/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|
27
|
Lee HY, Bae YS. The anti-infective peptide, innate defense-regulator peptide, stimulates neutrophil chemotaxis via a formyl peptide receptor. Biochem Biophys Res Commun 2008; 369:573-8. [DOI: 10.1016/j.bbrc.2008.02.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/13/2008] [Indexed: 11/24/2022]
|
28
|
An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett 2008; 582:1141-6. [PMID: 18339322 DOI: 10.1016/j.febslet.2008.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/02/2008] [Accepted: 03/04/2008] [Indexed: 11/20/2022]
Abstract
Urokinase receptor (uPAR) plays a key role in physiological and pathological processes sustained by an altered cell migration. We have developed peptides carrying amino acid substitutions along the Ser(88)-Arg-Ser-Arg-Tyr(92) (SRSRY) uPAR chemotactic sequence. The peptide pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2 (pERERY-NH(2)) shares the same binding site with SRSRY and competes with N-formyl-Met-Leu-Phe (fMLF) for binding to the G-protein-coupled N-formyl-peptide receptor (FPR). pERERY-NH(2) is a dose-dependent inhibitor of both SRSRY- and fMLF-directed cell migration, and prevents agonist-induced FPR internalization and fMLF-dependent ERK1/2 phosphorylation. pERERY-NH(2) is a new and potent uPAR inhibitor which may suggest the generation of new pharmacological treatments for pathological conditions involving increased cell migration.
Collapse
|
29
|
D'Acquisto F, Paschalidis N, Sampaio ALF, Merghani A, Flower RJ, Perretti M. Impaired T cell activation and increased Th2 lineage commitment in Annexin-1-deficient T cells. Eur J Immunol 2007; 37:3131-42. [PMID: 17948261 DOI: 10.1002/eji.200636792] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Annexin-1 is a well-known endogenous anti-inflammatory protein that modulates the activation of cells of the innate immune system such as neutrophils and macrophages. We have recently reported a positive role for the exogenous protein on T cell differentiation, however, whether such a role holds true for the endogenous protein has yet to be determined. This aspect has been investigated here finding that Annexin-1-deficient T cells display an impaired activation and proliferation in response to anti-CD3 plus anti-CD28 stimulation. Furthermore, differentiation of T cells from Annexin-1-deficient mice in Th0/Th1/Th2 or Th17 skewing conditions demonstrated an increased Th2 phenotype compared to cells from control littermates. Similar results were obtained when we analyzed the Th1/Th2 profile of lymph node cells obtained from mice immunized with keyhole limpet hemocyanin or the inflammatory infiltrate in mouse model of allergic inflammation. These results demonstrate a novel modulatory role of endogenous Annexin-1 in TCR signaling and T cell differentiation and suggest this protein might play a dual and complementary role in the innate and adaptive immune response.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London, London, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Lee HY, Lee SY, Shin EH, Kim SD, Kim JM, Lee MS, Ryu SH, Bae YS. F2L, a peptide derived from heme-binding protein, inhibits formyl peptide receptor-mediated signaling. Biochem Biophys Res Commun 2007; 359:985-90. [PMID: 17577578 DOI: 10.1016/j.bbrc.2007.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wan HX, Zhou C, Zhang Y, Sun M, Wang X, Yu H, Yang X, Ye RD, Shen JK, Wang MW. Discovery of Trp-Nle-Tyr-Met as a novel agonist for human formyl peptide receptor-like 1. Biochem Pharmacol 2007; 74:317-26. [PMID: 17517377 DOI: 10.1016/j.bcp.2007.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/05/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Formyl peptide receptor-like 1 (FPRL1) is a structural homologue of FPR, which binds chemotactic peptides as small as three amino acids (e.g., fMet-Leu-Phe, fMLF) and activates potent bactericidal functions in neutrophils. In comparison, FPRL1 ligands include peptides of 6-104 amino acids, such as Trp-Lys-Tyr-Met-Val-[d]Met (WKYMVm) and other synthetic peptides. To determine the core peptide sequence required for FPRL1 activation, we prepared various analogues based on WKYMVm and evaluated their bioactivities in an FPRL1-transfected cell line. Although substitution of d-Met(6) resulted in loss of activity, removal of Val(5) together with d-Met(6) produced a peptide that retained most of the bioactivities of the parent peptide. The resulting peptide, WKYM, represents a core structure for an FPRL1 ligand. Further substitution of Lys(2) with Nle slightly improved the potency of the tetrapeptide, which selectively activates FPRL1 over FPR. Based on these structure-activity relationship studies, we propose a model in which the modified tetrapeptide Trp-Nle-Tyr-Met (WNleYM) binds to FPRL1 through aromatic interactions involving the side chains of Trp(1) and Tyr(3), hydrophobic interaction of Nle(2), and the thio-based hydrogen bonding of Met(4), with the respective residues in FPRL1 which have not been identified. The identification of the core sequence of a potent peptide agonist provides a structural basis for future design of peptidomimetics as potential therapeutic agents for FPRL1-related disorders.
Collapse
Affiliation(s)
- Hui-Xin Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee HY, Shin EH, Bae YS. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis. Acta Pharmacol Sin 2006; 27:1359-66. [PMID: 17007744 DOI: 10.1111/j.1745-7254.2006.00426.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To investigate the effects of sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. METHODS Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. RESULTS We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphingosine-1-phosphate (S1P) receptors, we checked the effect of an S1P receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. CONCLUSION The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from S1P receptors, is involved in SPC-induced chemotaxis.
Collapse
Affiliation(s)
- Ha-young Lee
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | |
Collapse
|
33
|
D'Acquisto F, Merghani A, Lecona E, Rosignoli G, Raza K, Buckley CD, Flower RJ, Perretti M. Annexin-1 modulates T-cell activation and differentiation. Blood 2006; 109:1095-102. [PMID: 17008549 PMCID: PMC1855438 DOI: 10.1182/blood-2006-05-022798] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Annexin-1 is an anti-inflammatory protein that plays an important homeostatic role in innate immunity; however, its potential actions in the modulation of adaptive immunity have never been explored. Although inactive by itself, addition of annexin-1 to stimulated T cells augmented anti-CD3/CD28-mediated CD25 and CD69 expression and cell proliferation. This effect was paralleled by increased nuclear factor-kappaB (NF-kappaB), nuclear factor of activated T cells (NFATs), and activator protein-1 (AP-1) activation and preceded by a rapid T-cell receptor (TCR)-induced externalization of the annexin-1 receptor. Interestingly, differentiation of naive T cells in the presence of annexin-1 increased skewing in Th1 cells; in the collagen-induced arthritis model, treatment of mice with annexin-1 during the immunization phase exacerbated signs and symptoms at disease onset. Consistent with these findings, blood CD4+ cells from patients with rheumatoid arthritis showed a marked up-regulation of annexin-1 expression. Together these results demonstrate that annexin-1 is a molecular "tuner" of TCR signaling and suggest this protein might represent a new target for the development of drugs directed to pathologies where an unbalanced Th1/Th2 response or an aberrant activation of T cells is the major etiologic factor.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Bart's and The London, Queen Mary School of Medicine and Dentistry, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kang HK, Lee HY, Kim MK, Park KS, Park YM, Kwak JY, Bae YS. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocyte-derived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. THE JOURNAL OF IMMUNOLOGY 2005; 175:685-92. [PMID: 16002663 DOI: 10.4049/jimmunol.175.2.685] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) has been reported to stimulate monocytes, neutrophils, and dendritic cells (DCs). However, although WKYMVm has been reported to function as a DC chemoattractant, its role on DC maturation has not been examined. In this study, we investigated the effects of WKYMVm on human DC maturation. The costimulation of DCs with WKYMVm and LPS dramatically inhibited LPS-induced IL-12 production, CD86 and HLA-DR surface expression, and DC-mediated T cell proliferation. However, DC phagocytic activity was increased by WKYMVm stimulation. These findings demonstrate that WKYMVm inhibits DC maturation by LPS. In terms of the mechanism underlying DC maturation inhibition by WKYMVm, we found that LPS-induced DC maturation was negatively regulated by WKYMVm-stimulated ERK activity. Moreover, the costimulation of DCs with WKYMVm and LPS dramatically inhibited the LPS-induced accumulations of IL-12 mRNA, thus suggesting that WKYMVm inhibits LPS-induced IL-12 production at the transcriptional level. We also found that DCs express two WKYMVm receptors, formyl peptide receptor (FPR) and FPR-like 2 (FPRL2). In addition, formyl-Met-Leu-Phe (a FPR ligand), Trp-Lys-Tyr-Met-Val-Met, Hp(2-20) peptide, and F2L (three FPRL2 ligands) inhibited LPS-induced IL-12 production in DCs. Taken together, our findings indicate that the activations of FPR and FPRL2 inhibit LPS-induced DC maturation, and suggest that these two receptors should be regarded as important potential therapeutic targets for the modulation of DC maturation.
Collapse
Affiliation(s)
- Hyun Kyu Kang
- Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Boxio R, Bossenmeyer-Pourié C, Vanderesse R, Dournon C, Nüsse O. The immunostimulatory peptide WKYMVm-NH activates bone marrow mouse neutrophils via multiple signal transduction pathways. Scand J Immunol 2005; 62:140-7. [PMID: 16101820 DOI: 10.1111/j.1365-3083.2005.01651.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
G-protein-coupled receptors play a major role in the activation of the innate immune system, such as polymorphonuclear neutrophils. Members of the formyl peptide receptor family recognize chemotactic peptides as well the amyloïd-beta peptide and fragments of the human immunodeficiency virus envelope and may thus be implicated in major pathologies. The peptide WKYMVm-NH2 probably activates the receptor FPRL1 and its mouse orthologues Fpr-rs1 and Fpr-rs2. We examined the stimulation of C57BL6 mouse neutrophils by WKYMVm-NH2 and the effects of several inhibitors for intracellular signalling pathways (wortmannin, LY 294002, staurosporin, H-89, U 73122, thapsigargin and SKF 96365). We show here that WKYMVm-NH2 is a powerful stimulator of primary and secondary granule exocytosis as well as superoxide production. The signalling pathway involves phosphoinositide 3-kinase, protein kinase C, phospholipase C and store-operated calcium influx. Studies with peptide antagonists suggest that WKYMVm-NH2 preferentially activates exocytosis via FPRL1 and not FPR, the major receptor for N-formylated peptides such as fMLF. However, the signalling pathways activated by WKYMVm-NH2 in mouse neutrophils are similar to those activated by fMLF in human neutrophils. Thus, the effect and the signalling pathways of the two agonists and their receptors are at least partially overlapping.
Collapse
Affiliation(s)
- R Boxio
- Laboratory of Experimental Biology - Immunology, University Nancy, Vandoeuvre-les-Nancy, France
| | | | | | | | | |
Collapse
|
36
|
Edwards BS, Bologa C, Young SM, Balakin KV, Prossnitz ER, Savchuck NP, Sklar LA, Oprea TI. Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Mol Pharmacol 2005; 68:1301-10. [PMID: 16118363 DOI: 10.1124/mol.105.014068] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The formylpeptide receptor (FPR) family of G-protein-coupled receptors contributes to the localization and activation of tissue-damaging leukocytes at sites of chronic inflammation. We developed a FPR homology model and pharmacophore (based on the bovine rhodopsin crystal structure and known FPR ligands, respectively) for in silico screening of approximately 480,000 drug-like small molecules. A subset of 4324 compounds that matched the pharmacophore was then physically screened with the HyperCyt flow cytometry platform in high-throughput, no-wash assays that directly measure human FPR binding, with samples (each approximately 2500 cells in 2 microl) analyzed at 40/min. From 52 confirmed hits (1.2% hit rate), we identified 30 potential lead compounds (inhibition constant, Ki= 1-32 microM) representing nine distinct chemical families. Four compounds in one family were weak partial agonists. All others were antagonists. This virtual screening approach improved the physical screening hit rate by 12-fold (versus 0.1% hit-rate in a random compound collection), providing an efficient process for identifying small molecule antagonists.
Collapse
Affiliation(s)
- Bruce S Edwards
- Department of Cytometry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Park KS, Lee HY, Kim MK, Shin EH, Bae YS. Lysophosphatidylserine stimulates leukemic cells but not normal leukocytes. Biochem Biophys Res Commun 2005; 333:353-8. [PMID: 15946646 DOI: 10.1016/j.bbrc.2005.05.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/23/2005] [Indexed: 11/28/2022]
Abstract
In this study, we observed that lysophosphatidylserine (LPS) stimulated intracellular calcium ([Ca(2+)](i)) increase in leukemic cells but not in normal human peripheral blood mononuclear cells. LPS also stimulated [Ca(2+)](i) increase in human leukemic THP-1 cells. LPS-stimulated [Ca(2+)](i) increase was inhibited by U-73122 but not by U-73343. LPS also stimulated inositol phosphates formation in THP-1 cells, suggesting that LPS stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) completely inhibited [Ca(2+)](i) increase by LPS, indicating the activation of PTX-sensitive G-proteins. We also found that LPS-induced [Ca(2+)](i) increase was completely inhibited by suramin, suggesting G-protein coupled receptor activation. Since LPS specifically stimulates PTX-sensitive G-proteins, phospholipase C-dependent [Ca(2+)](i) increase in leukemic cells but not normal peripheral blood leukocytes, LPS receptor may be associated with leukemia.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Gargiulo L, Longanesi-Cattani I, Bifulco K, Franco P, Raiola R, Campiglia P, Grieco P, Peluso G, Stoppelli MP, Carriero MV. Cross-talk between fMLP and Vitronectin Receptors Triggered by Urokinase Receptor-derived SRSRY Peptide. J Biol Chem 2005; 280:25225-32. [PMID: 15866865 DOI: 10.1074/jbc.m412605200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) sustains cell migration through its capacity to promote pericellular proteolysis, regulate integrin function, and mediate chemotactic signaling in response to urokinase. We have characterized the early signaling events triggered by the Ser-Arg-Ser-Arg-Tyr (SRSRY) chemotactic uPAR sequence. Cell exposure to SRSRY peptide promotes directional migration on vitronectin-coated filters, regardless of uPAR expression, in a specific and dose-dependent manner, with maximal effect at a concentration level as low as 10 nm. A similar concentration profile is observed in a quantitative analysis of SRSRY-dependent cytoskeletal rearrangements, mostly consisting of filamentous structures localized in a single cell region. SRSRY analogues with alanine substitutions fail to drive F-actin formation and cell migration, indicating a critical role for each amino acid residue. As with ligand-dependent uPAR signaling, SRSRY stimulates protein kinase C activity and results in ERK1/2 phosphorylation. The involvement of the high affinity N-formyl-Met-Leu-Phe receptor (FPR) in this process is indicated by the finding that 100 nm N-formyl-Met-Leu-Phe inhibits binding of D2D3 to the cell surface, as well as SRSRY-stimulated cell migration and F-actin polarization. Moreover, cell exposure to SRSRY promotes FPR-dependent vitronectin release and increased uPAR.alphavbeta5 vitronectin receptor physical association, indicating that alphavbeta5 activity is regulated by the SRSRY uPAR sequence via FPR. Finally, we provide evidence that alphavbeta5 is required for SRSRY-dependent ERK1/2 phosphorylation, whereas it is not required for protein kinase C activation. The data indicate that the ability of uPAR to stimulate cell migration and cytoskeletal rearrangements is retained by the SRSRY peptide alone and that it is supported by cross-talk between FPR and alphavbeta5.
Collapse
Affiliation(s)
- Lucia Gargiulo
- Department of Experimental Oncology, National Cancer Institute, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The inflammatory response protects the body against infection and injury but can itself become deregulated with deleterious consequences to the host. It is now clear that several endogenous biochemical pathways activated during defense reactions can counterregulate inflammation. New experimental evidence adds resolvin E1 to this group of endogenous inhibitors and provides further rationale for the beneficial effects of dietary supplementation with fish oils. It also highlights an unexpected twist in the pharmacology of aspirin.
Collapse
|
40
|
Gripentrog JM, Miettinen HM. Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis. Cell Signal 2005; 17:1300-11. [PMID: 16038804 DOI: 10.1016/j.cellsig.2005.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 01/19/2005] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit diverse cellular signals in response to a large number of stimuli such as chemoattractants, lipids, neurotransmitters, odorants and light. The classical signaling pathway is through heterotrimeric G proteins, but GPCRs can also transmit signals through mechanisms that are not dependent on G proteins. In mammalian cells, the key component for this type of signaling is the family of scaffolding molecules called beta-arrestins. They can function as scaffolds for activation of mitogen-activated protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this study we examined the role of G protein and beta-arrestin in formyl peptide receptor (FPR)-mediated activation of chemotaxis, receptor endocytosis and ERK1/2 activation using wild type and mutant receptors. Our findings suggest that, unlike certain other GPCRs that can activate ERK1/2 without the involvement of G protein, FPR requires signaling through a G protein-mediated pathway. Previous observations have shown that ERK1/2, activated through G protein, translocates to the nucleus where it stimulates transcription factors. In contrast, the scaffolding protein beta-arrestin retains the activated ERK1/2 in the cytoplasm to allow phosphorylation of cytoplasmic targets. Our experimental data show that both wild-type FPR and a mutant FPR, defective in beta-arrestin binding, induce nuclear translocation of activated ERK1/2 with similar ligand concentration dependence as seen for activation of cytosolic ERK1/2. We propose that FPR-mediated activation of ERK1/2 takes place primarily through G protein and is physiologically important to ensure transcriptional activation of myeloid immunomodulators, such as cytokines.
Collapse
Affiliation(s)
- Jeannie M Gripentrog
- Department of Microbiology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717-3520, USA
| | | |
Collapse
|
41
|
Lee HY, Kang HK, Yoon HR, Kwak JY, Bae YS. Lysophosphatidic acid is a mediator of Trp-Lys-Tyr-Met-Val-d-Met-induced calcium influx. Biochem Biophys Res Commun 2004; 324:458-65. [PMID: 15465041 DOI: 10.1016/j.bbrc.2004.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/16/2022]
Abstract
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.
Collapse
Affiliation(s)
- Ha-Young Lee
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
|