1
|
Grant CE, Flis AL, Toulabi L, Zingone A, Rossi E, Aploks K, Sheppard H, Ryan BM. DRD1 suppresses cell proliferation and reduces EGFR activation and PD-L1 expression in NSCLC. Mol Oncol 2024; 18:1631-1648. [PMID: 38572507 PMCID: PMC11161724 DOI: 10.1002/1878-0261.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent. In the present study, expression and methylation of dopamine receptor D1 (DRD1) were measured using RNA sequencing (RNAseq) and reverse transcription polymerase chain reaction (RT-PCR) in non-small cell lung cancer (NSCLC) samples, and validated using publicly available datasets, including The Cancer Genome Atlas (TCGA). In vitro and in vivo functional experiments were performed for cell proliferation and tumor growth, respectively. Mechanistic analyses of the transcriptome and kinome in DRD1-modulated cells informed further experiments, which characterized the effects on the epidermal growth factor receptor (EGFR) pathway and programmed cell death 1 ligand 1 (PD-L1) proteins. Through these experiments, we identified the DRD1 gene as a negative regulator of disease progression in NSCLC. We show that DRD1, as well as other DA pathway components, are expressed in normal human lung tissue, and that loss of DRD1 expression through promoter hypermethylation is a common feature in NSCLC patients and is associated with worse survival. At the cellular level, DRD1 affects proliferation by inhibiting the activation of EGFR and mitogen-activated protein kinase 1/2 (ERK1/2). Interestingly, we also found that DRD1 regulates the expression of PD-L1 in lung cancer cells. Taken together, these results suggest that DRD1 methylation may constitute a biomarker of poor prognosis in NSCLC patients while other components of this pathway could be targeted to improve response to EGFR- and PD-L1-targeted therapies.
Collapse
Affiliation(s)
- Christopher E. Grant
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Amy L. Flis
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Emily Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Krist Aploks
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Heather Sheppard
- Veterinary Pathology CoreSt. Jude Children's Research HospitalMemphisTNUSA
| | - Bríd M. Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
2
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
3
|
Sun J, Hu JR, Liu CF, Li Y, Wang W, Fu R, Guo M, Wang HL, Pang M. ANKRD49 promotes the metastasis of NSCLC via activating JNK-ATF2/c-Jun-MMP-2/9 axis. BMC Cancer 2023; 23:1108. [PMID: 37964204 PMCID: PMC10644579 DOI: 10.1186/s12885-023-11612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Ankyrin repeat domain 49 (ANKRD49) has been found to be highly expressed in multiple cancer including lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). However, the function of ANKRD49 in the pathogenesis of NSCLC still remains elusive. Previously, ANKRD49 has been demonstrated to promote the invasion and metastasis of A549 cells, a LUAD cell line, via activating the p38-ATF-2-MMP2/MMP9 pathways. Considering the heterogeneity of tumor cells, the function and mechanism of ANKRD49 in NSCLC need more NSCLC-originated cells to clarify. METHODS Real-time qPCR was employed to test ANKRD49 expression levels in nine pairs of fresh NSCLC tissues and the corresponding adjacent normal tissues. The function of ANKRD49 was investigated using overexpression and RNA interference assays in lung adenocarcinoma cell line (NCI-H1299) and lung squamous carcinoma cell line (NCI-H1703) through gelatin zymography, cell counting kit-8, colony formation, wound healing, migration and invasion assays mmunoprecipitation was performed to in vitro. Immunoprecipitation was performed to test the interaction of c-Jun and ATF2. Chromatin immunoprecipitation was conducted to assess the transcriptional regulation of ATF2/c-Jun on MMP-2/9. Moreover, the tumorigenicity of ANKRD49 was evaluated in nude mice models and the involved signal molecular was also measured by immunohistochemical method. RESULTS We found that the levels of ANKRD49 in cancerous tissues were higher than those in adjacent normal tissues. in vitro assay showed that ANKRD49 promoted the migration and invasion of NCI-H1299 and NCI-H1703 cells via enhancing the levels of MMP-2 and MMP-9. Furthermore, ANKRD49 elevated phosphorylation of JNK and then activated c-Jun and ATF2 which interact in nucleus to promote the binding of ATF2:c-Jun with the promoter MMP-2 or MMP-9. In vivo assay showed that ANKRD49 promoted lung metastasis of injected-NSCLC cells and the high metastatic rate was positively correlated with the high expression of ANKRD49, MMP-2, MMP-9, p-JNK, p-c-Jun and p-ATF2. CONCLUSION The present study indicated that ANKRD49 accelerated the invasion and metastasis of NSCLC cells via JNK-mediated transcription activation of c-Jun and ATF2 which regulated the expression of MMP-2/MMP-9. The molecular mechanisms of ANKRD49's function is different from those found in A549 cells. The current study is a supplement and improvement to the previous research.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
- Department of Laboratorial Medicine, Changzhi Traditional Chinese Medicine Hospital, Changzhi, 046000, China
| | - Jin-Rui Hu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Chao-Feng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Department of Respiratory Medicine 1, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Wei Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Rong Fu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China.
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China.
- Department of Pulmonary and Critical Care Medicine, the First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
4
|
Nisar H, Sanchidrián González PM, Brauny M, Labonté FM, Schmitz C, Roggan MD, Konda B, Hellweg CE. Hypoxia Changes Energy Metabolism and Growth Rate in Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2023; 15:cancers15092472. [PMID: 37173939 PMCID: PMC10177580 DOI: 10.3390/cancers15092472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Hypoxia occurs in 80% of non-small cell lung carcinoma (NSCLC) cases, leading to treatment resistance. Hypoxia's effects on NSCLC energetics are not well-characterized. We evaluated changes in glucose uptake and lactate production in two NSCLC cell lines under hypoxia in conjunction with growth rate and cell cycle phase distribution. The cell lines A549 (p53 wt) and H358 (p53 null) were incubated under hypoxia (0.1% and 1% O2) or normoxia (20% O2). Glucose and lactate concentrations in supernatants were measured using luminescence assays. Growth kinetics were followed over seven days. Cell nuclei were stained with DAPI and nuclear DNA content was determined by flow cytometry to determine cell cycle phase. Gene expression under hypoxia was determined by RNA sequencing. Glucose uptake and lactate production under hypoxia were greater than under normoxia. They were also significantly greater in A549 compared to H358 cells. Faster energy metabolism in A549 cells was associated with a higher growth rate in comparison to H358 cells under both normoxia and hypoxia. In both cell lines, hypoxia significantly slowed down the growth rate compared to proliferation under normoxic conditions. Hypoxia led to redistribution of cells in the different cycle phases: cells in G1 increased and the G2 population decreased. Glucose uptake and lactate production increase under hypoxia in NSCLC cells indicated greater shunting of glucose into glycolysis rather than into oxidative phosphorylation compared to normoxia, making adenosine triphosphate (ATP) production less efficient. This may explain the redistribution of hypoxic cells in the G1 cell cycle phase and the time increase for cell doubling. Energy metabolism changes were more prominent in faster-growing A549 cells compared to slower-growing H358 cells, indicating possible roles for the p53 status and inherent growth rate of different cancer cells. In both cell lines, genes associated with cell motility, locomotion and migration were upregulated under chronic hypoxia, indicating a strong stimulus to escape hypoxic conditions.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 44000, Pakistan
| | | | - Melanie Brauny
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science/Faculty of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Frederik M Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Christine E Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
5
|
López-Álvarez M, González-Aguilera C, Moura DS, Sánchez-Bustos P, Mondaza-Hernández JL, Martín-Ruiz M, Renshaw M, Ramos R, Castilla C, Blanco-Alcaina E, Hindi N, Martín-Broto J. Efficacy of Eribulin Plus Gemcitabine Combination in L-Sarcomas. Int J Mol Sci 2022; 24:680. [PMID: 36614121 PMCID: PMC9820645 DOI: 10.3390/ijms24010680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Although the overall survival of advanced soft-tissue sarcoma (STS) patients has increased in recent years, the median progression-free survival is lower than 5 months, meaning that there is an unmet need in this population. Among second-line treatments for advanced STS, eribulin is an anti-microtubule agent that has been approved for liposarcoma. Here, we tested the combination of eribulin with gemcitabine in preclinical models of L-sarcoma. The effect in cell viability was measured by MTS and clonogenic assay. Cell cycle profiling was studied by flow cytometry, while apoptosis was measured by flow cytometry and Western blotting. The activity of eribulin plus gemcitabine was evaluated in in vivo patient-derived xenograft (PDX) models. In L-sarcoma cell lines, eribulin plus gemcitabine showed to be synergistic, increasing the number of hypodiploid events (increased subG1 population) and the accumulation of DNA damage. In in vivo PDX models of L-sarcomas, eribulin combined with gemcitabine was a viable scheme, delaying tumour growth after one cycle of treatment, being more effective in leiomyosarcoma. The combination of eribulin and gemcitabine was synergistic in L-sarcoma cultures and it showed to be active in in vivo studies. This combination deserves further exploration in the clinical context.
Collapse
Affiliation(s)
- María López-Álvarez
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Universidad Pablo de Olavide, 41092 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Sevilla, Spain
| | - David S. Moura
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Paloma Sánchez-Bustos
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
| | | | - Marta Martín-Ruiz
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Marta Renshaw
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Carolina Castilla
- Nodo Biobanco Hospital Universitario Virgen del Rocío-Instituto de Biomedicina de Sevilla, Biobanco del SSPA, Unidad de Anatomía Patológica, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Elena Blanco-Alcaina
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nadia Hindi
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital General de Villalba, Collado Villalba, 28400 Madrid, Spain
| | - Javier Martín-Broto
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital General de Villalba, Collado Villalba, 28400 Madrid, Spain
| |
Collapse
|
6
|
Azumi M, Yoshie M, Takano W, Ishida A, Kusama K, Tamura K. The Impact of Eribulin on Stathmin Dynamics and Paclitaxel Sensitivity in Ovarian Cancer Cells. Biol Pharm Bull 2022; 45:1627-1635. [DOI: 10.1248/bpb.b22-00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mana Azumi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Wataru Takano
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Akari Ishida
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Yao Y, Fareed R, Zafar A, Saleem K, Huang T, Duan Y, Rehman MU. State-of-the-art combination treatment strategies for advanced stage non-small cell lung cancer. Front Oncol 2022; 12:958505. [PMID: 35978836 PMCID: PMC9376330 DOI: 10.3389/fonc.2022.958505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most abundant type of epithelial lung cancer being diagnosed after 40% of invasions of excrescence in pulmonary tissues. According to WHO, 30% of NSCLC patients can be cured if diagnosed and treated early. Mutations play an important role in advanced stage NSCLC treatment, which includes critical proteins necessary for cellular growth and replication. Restricting such mutations may improve survival in lung cancer patients. Newer technologies include endoscopic bronchial ultrasonography and esophageal ultrasonography. Currently, policymaking or decision-making for treatment regimens merely depends on the genomic alterations and mutations. DNA sequencing, methylation, protein, and fragmented DNA analysis do NSCLC screening. Achievement of these goals requires consideration of available therapeutics in current anticancer approaches for improving quality of life and treatment outcomes for NSCLC patient. The specific goals of this review are to discuss first-line and second-line therapies for advanced-stage NSCLC and molecularly targeted therapy including thoughtful discussion on precise role of treatment strategies in specific tumors. Also, concerned diagnostics, new clinical trial designs, and pursuing appropriate combinations of radiotherapy and/or chemotherapy with biological therapy for exceptional cases considering resistance mechanisms and palliative care will be discussed.
Collapse
Affiliation(s)
- Yongfang Yao
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aliya Zafar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|