1
|
Lica JJ, Gucwa K, Heldt M, Stupak A, Maciejewska N, Ptaszyńska N, Łęgowska A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Jakóbkiewicz-Banecka J, Rolka K. Lactoferricin B Combined with Antibiotics Exhibits Leukemic Selectivity and Antimicrobial Activity. Molecules 2024; 29:678. [PMID: 38338422 PMCID: PMC10856415 DOI: 10.3390/molecules29030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Anna Stupak
- Polpharma Biologics S.A., Gdansk Science & Technology Park, 80-172 Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|