1
|
Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. UNIVERSE 2022. [DOI: 10.3390/universe8080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectroscopic instruments were a part of payloads on orbiter and lander missions and delivered vast data sets to explore minerals, elements and molecules on air-less rocky planets, asteroids and comets on global and local scales. To answer current space science questions, the chemical composition of planetary rocks and soils at grain scale is required, as well as measurements of element (isotope) concentrations down to the part per million or lower. Only mass spectrometric methods equipped with laser sampling ion sources can deliver the necessary information. Laser sampling techniques can reduce the dimensions of the investigated sample material down to micrometre scale, allowing for the composition analysis of grain-sized objects or thin mineral layers with sufficiently high spatial resolution, such that important geological processes can be recognised and studied as they progressed in time. We describe the performance characteristics, when applied to meteorite and geological samples, of a miniaturised laser ablation/ionisation mass spectrometer (named LMS) system that has been developed in our group. The main advantages of the LMS instrument over competing techniques are illustrated by examples of high spatial (lateral and vertical) resolution studies in different meteorites, terrestrial minerals and fossil-like structures in ancient rocks for most elements of geochemical interest. Top-level parameters, such as dimension, weight, and power consumption of a possible flight design of the LMS system are presented as well.
Collapse
|
2
|
Hu S, He H, Ji J, Lin Y, Hui H, Anand M, Tartèse R, Yan Y, Hao J, Li R, Gu L, Guo Q, He H, Ouyang Z. A dry lunar mantle reservoir for young mare basalts of Chang'e-5. Nature 2021; 600:49-53. [PMID: 34666337 PMCID: PMC8636271 DOI: 10.1038/s41586-021-04107-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
The distribution of water in the Moon's interior carries implications for the origin of the Moon1, the crystallization of the lunar magma ocean2 and the duration of lunar volcanism2. The Chang'e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)3, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang'e-5 basalts. We derive a maximum water abundance of 283 ± 22 μg g-1 and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10-4 for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization4, we estimate a maximum mantle water abundance of 1-5 μg g-1, suggesting that the Moon's youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang'e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs. 5,6), suggesting that the mantle source of the Chang'e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.
Collapse
Affiliation(s)
- Sen Hu
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China.
| | - Huicun He
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Jianglong Ji
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Yangting Lin
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hejiu Hui
- State Key Laboratory for Mineral Deposits Research & Lunar and Planetary Science Institute, School of the Earth Sciences and Engineering, Nanjing University, Nanjing, China
- CAS Center for Excellence in Comparative Planetology, Hefei, China
| | - Mahesh Anand
- School of Physical Sciences, The Open University, Milton Keynes, UK
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Romain Tartèse
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Yihong Yan
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Jialong Hao
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Li
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Lixin Gu
- Key Laboratory of the Earth and Planetary Physics, Chinese Academy of Sciences, Beijing, China
| | - Qian Guo
- State Key Laboratory of Lithospheric Evolution, Chinese Academy of Sciences, Beijing, China
| | - Huaiyu He
- State Key Laboratory of Lithospheric Evolution, Chinese Academy of Sciences, Beijing, China
| | - Ziyuan Ouyang
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
3
|
Wang K, Li W, Li S, Tian Z, Koefoed P, Zheng XY. Geochemistry and Cosmochemistry of Potassium Stable Isotopes. CHEMIE DER ERDE : BEITRAGE ZUR CHEMISCHEN MINERALOGIE, PETROGRAPHIE UND GEOLOGIE 2021; 81:125786. [PMID: 35001939 PMCID: PMC8740523 DOI: 10.1016/j.chemer.2021.125786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stable potassium isotopes are one of the emerging non-traditional isotope systems enabled in recent years by the advance of Multi-Collector Inductively-Coupled-Plasma Mass-Spectrometry (MC-ICP-MS). In this review, we first summarize the geochemical and cosmochemical properties of K, its major reservoirs, and the analytical methods of K isotopes. Following this, we review recent literature on K isotope applications in the fields of geochemistry and cosmochemistry. Geochemically, K is a highly incompatible lithophile element, and a highly soluble, biophile element. The isotopic fractionation of K is relatively small during magmatic processes such as partial melting and fractional crystallization, whereas during low-temperature and biological processes fractionation is considerably larger. This resolvable fractionation has made K isotopes promising tracers for a variety of Earth and environmental processes, including chemical weathering, low-temperature alteration of igneous rocks, reverse weathering, and the recycling of sediments into the mantle during subduction. Sorption and interactions of aqueous K with different clay minerals during cation exchange and clay formation are likely to be of fundamental significance in generating much of the K isotope variability seen in samples from the Earth surface and samples carrying recycled surface materials from the deep Earth. The magnitude of this fractionation is process- and mineral-dependent. Comprehensive quantification of pertinent K isotope fractionation factors is currently lacking and urgently needed. Significant fractionation during biological activities, such as plant uptake, demonstrates the potential utility of K isotopes in the study of the nutrient cycle and its relation to the climate and various ecosystems, enabling new and largely unexplored avenues for future research. Of significant importance to the cosmochemistry community, K is a moderately volatile element with large variations in K/U ratio observed among chondrites and planetary materials. As this indicates different degrees of volatile depletion, it has become a fundamental chemical signature of both chondritic and planetary bodies. This volatile depletion has been attributed to various processes such as solar nebula condensation, mixing of volatile-rich and -poor reservoirs, planetary accretional volatilization via impacts, and/or magma ocean degassing. While K isotopes have the potential to distinguish these different processes, the current results are still highly debated. A good correlation between the K isotope compositions of four differentiated bodies (Earth, Mars, Moon, and Vesta) and their masses suggests a ubiquitous volatile depletion mechanism during the formation of the terrestrial planets. It is still unknown whether any of the K isotopic variation among chondrites and differentiated bodies can be attributed to inherited signatures of mass-independent isotopic anomalies.
Collapse
Affiliation(s)
- Kun Wang
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, MO 63130, USA
| | - Weiqiang Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shilei Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhen Tian
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, MO 63130, USA
| | - Piers Koefoed
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, MO 63130, USA
| | - Xin-Yuan Zheng
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Conditions and extent of volatile loss from the Moon during formation of the Procellarum basin. Proc Natl Acad Sci U S A 2021; 118:2023023118. [PMID: 33723067 DOI: 10.1073/pnas.2023023118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rocks from the lunar interior are depleted in moderately volatile elements (MVEs) compared to terrestrial rocks. Most MVEs are also enriched in their heavier isotopes compared to those in terrestrial rocks. Such elemental depletion and heavy isotope enrichments have been attributed to liquid-vapor exchange and vapor loss from the protolunar disk, incomplete accretion of MVEs during condensation of the Moon, and degassing of MVEs during lunar magma ocean crystallization. New Monte Carlo simulation results suggest that the lunar MVE depletion is consistent with evaporative loss at 1,670 ± 129 K and an oxygen fugacity +2.3 ± 2.1 log units above the fayalite-magnetite-quartz buffer. Here, we propose that these chemical and isotopic features could have resulted from the formation of the putative Procellarum basin early in the Moon's history, during which nearside magma ocean melts would have been exposed at the surface, allowing equilibration with any primitive atmosphere together with MVE loss and isotopic fractionation.
Collapse
|
5
|
The Cl isotope composition and halogen contents of Apollo-return samples. Proc Natl Acad Sci U S A 2020; 117:23418-23425. [PMID: 32900968 DOI: 10.1073/pnas.2014503117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lunar mare basalts are depleted in F and Cl by approximately an order of magnitude relative to mid-ocean ridge basalts and contain two Cl-bearing components with elevated isotopic compositions relative to the bulk-Earth value of ∼0‰. The first is a water-soluble chloride constituting 65 ± 10% of total Cl with δ37Cl values averaging 3.0 ± 4.3‰. The second is structurally bound chloride with δ37Cl values averaging 7.3 ± 3.5‰. These high and distinctly different isotopic values are inconsistent with equilibrium fractionation processes and instead suggest early and extensive degassing of an isotopically light vapor. No relationship is observed between F/Cl ratios and δ37Cl values, which suggests that lunar halogen depletion largely resulted from the Moon-forming Giant Impact. The δ37Cl values of apatite are generally higher than the structurally bound Cl, and ubiquitously higher than the calculated bulk δ37Cl values of 4.1 ± 4.0‰. The apatite grains are not representative of the bulk rock, and instead record localized degassing during the final stages of lunar magma ocean (LMO) or later melt crystallization. The large variability in the δ37Cl values of apatite within individual thin sections further supports this conclusion. While urKREEP (primeval KREEP [potassium/rare-earth elements/phosphorus]) has been proposed to be the source of the Moon's high Cl isotope values, the ferroan anorthosites (FANs) have the highest δ37Cl values and have a positive correlation with Cl content, and yet do not contain apatite, nor evidence of a KREEP component. The high δ37Cl values in this lithology are explained by the incorporation of a >30‰ HCl vapor from a highly evolved LMO.
Collapse
|
6
|
Chlorine Isotope Composition of Apatite from the >3.7 Ga Isua Supracrustal Belt, SW Greenland. MINERALS 2019. [DOI: 10.3390/min10010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The study of the oldest surviving rock suites is crucial for understanding the processes that shaped the early Earth and formed an environment suitable for life. The metasedimentary and metavolcanic rocks of the early Archean Isua supracrustal belt contain abundant apatite, the geochemical signatures of which may help decipher ancient environmental conditions. However, previous research has shown that secondary processes, including amphibolite-facies metamorphism, have reset the original hydrogen isotope composition (δD) of apatite from the Isua belt; therefore, δD values are not indicative of primary conditions in the Archean. Here, we report the first in situ chlorine isotope (δ37Cl) analyses by Secondary Ion Mass Spectrometry (SIMS) from Isua apatite, which we combine with information from transmission electron microscopy, cathodoluminescence imaging, and spectroscopy, documenting the micron-scale internal features of apatite crystals. The determined δ37ClSMOC values (chlorine isotope ratios vs. standard mean ocean chloride) fall within a range from −0.8‰ to 1.6‰, with the most extreme values recorded by two banded iron formation samples. Our results show that δ37Cl values cannot uniquely document primary signatures of apatite crystals, but the results are nonetheless helpful for assessing the extent of secondary overprint.
Collapse
|
7
|
Lin Y, van Westrenen W. Isotopic evidence for volatile replenishment of the Moon during the Late Accretion. Natl Sci Rev 2019; 6:1247-1254. [PMID: 34692002 PMCID: PMC8291620 DOI: 10.1093/nsr/nwz033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Accepted: 03/08/2019] [Indexed: 11/12/2022] Open
Abstract
The traditional view of a dry, volatile-poor Moon has been challenged by the identification of water and other volatiles in lunar samples, but the volatile budget delivery time(s), source(s) and temporal evolution remain poorly constrained. Here we show that hydrogen and chlorine isotopic ratios in lunar apatite changed significantly during the Late Accretion (LA, 4.1-3.8 billion years ago). During this period, deuterium/hydrogen ratios in the Moon changed from initial carbonaceous-chondrite-like values to values consistent with an influx of ordinary-chondrite-like material and pre-LA elevated δ37Cl values drop towards lower chondrite-like values. Inferred pre-LA lunar interior water contents are significantly lower than pristine values suggesting degassing, followed by an increase during the LA. These trends are consistent with dynamic models of solar-system evolution, suggesting that the Moon's (and Earth's) initial volatiles were replenished ∼0.5 Ga after their formation, with their final budgets reflecting a mixture of sources and delivery times.
Collapse
Affiliation(s)
- Yanhao Lin
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Wim van Westrenen
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
8
|
Wang Y, Hsu W, Guan Y. An extremely heavy chlorine reservoir in the Moon: Insights from the apatite in lunar meteorites. Sci Rep 2019; 9:5727. [PMID: 30952935 PMCID: PMC6450942 DOI: 10.1038/s41598-019-42224-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Chlorine, an extremely hydrophilic volatile element, provides important information regarding the origin of intrinsic volatiles in the Moon. Lunar apatite was found to have a wider spread of δ37Cl (from -1 to +40‰ versus standard mean ocean chloride) than most terrestrial and chondritic ones (0 ± 0.5‰). However, the provenance of the elevated lunar δ37Cl is still enigmatic. Here we report new isotopic data for H and Cl in apatite from three lunar meteorites and discuss possible mechanisms for Cl isotopic fractionation of the Moon. The apatite grain in Dhofar 458 has an average δ37Cl value of +76‰, indicative of an extremely heavy Cl reservoir in the Moon. Volatile loss associated with the Moon-forming Giant Impact and the formation of lunar magma ocean could account for the large Cl isotopic fractionation of the Moon. The observed H2O contents (220-5200 ppm), δD (-100 to +550‰) and δ37Cl values (+3.8 - +81.1‰) in lunar apatite could be understood if late accretion of hydrous components were added to the Moon after the fractionation of Cl isotopes. The heterogeneous distribution of lunar Cl isotopes is probably resulted from complex lunar formation and differentiation processes.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210034, China.,The State Key Laboratory of Lunar and Planetary Science/Space Science Institute, Macau University of Science and Technology, Taipa, Macau, China.,CAS Center for Excellence in Comparative Planetology, Purple Mountain Observatory, Nanjing, 210034, China
| | - Weibiao Hsu
- The State Key Laboratory of Lunar and Planetary Science/Space Science Institute, Macau University of Science and Technology, Taipa, Macau, China. .,CAS Center for Excellence in Comparative Planetology, Purple Mountain Observatory, Nanjing, 210034, China.
| | - Yunbin Guan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
9
|
Sossi PA, Moynier F, van Zuilen K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc Natl Acad Sci U S A 2018; 115:10920-10925. [PMID: 30297398 PMCID: PMC6205496 DOI: 10.1073/pnas.1809060115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Terrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth's mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth's mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO2 species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600-1,800 K and oxygen fugacities near the fayalite-magnetite-quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth's mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon.
Collapse
Affiliation(s)
- Paolo A Sossi
- Institut de Physique du Globe de Paris, Université Paris Diderot, Université Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France;
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Université Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France
- Institut Universitaire de France, 75231 Paris Cedex 05, France
| | - Kirsten van Zuilen
- Institut de Physique du Globe de Paris, Université Paris Diderot, Université Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France
| |
Collapse
|
10
|
Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation. Sci Rep 2018; 8:7053. [PMID: 29728585 PMCID: PMC5935680 DOI: 10.1038/s41598-018-25505-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
The depletions of potassium (K) and sodium (Na) in samples from planetary interiors have long been considered as primary evidence for their volatile behavior during planetary formation processes. Here, we use high-pressure experiments combined with laser ablation analyses to measure the sulfide-silicate and metal-silicate partitioning of K and Na at high pressure (P) – temperature (T) and find that their partitioning into metal strongly increases with temperature. Results indicate that the observed Vestan and Martian mantle K and Na depletions can reflect sequestration into their sulfur-rich cores in addition to their volatility during formation of Mars and Vesta. This suggests that alkali depletions are not affected solely by incomplete condensation or partial volatilization during planetary formation and differentiation, but additionally or even primarily reflect the thermal and chemical conditions during core formation. Core sequestration is also significant for the Moon, but lunar mantle depletions of K and Na cannot be reconciled by core formation only. This supports the hypothesis that measured isotopic fractionations of K in lunar samples represent incomplete condensation or extensive volatile loss during the Moon-forming giant impact.
Collapse
|
11
|
Steenstra ES, Lin Y, Dankers D, Rai N, Berndt J, Matveev S, van Westrenen W. The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb. Sci Rep 2017; 7:14552. [PMID: 29109545 PMCID: PMC5673932 DOI: 10.1038/s41598-017-15203-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
Abstract
The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.
Collapse
Affiliation(s)
- Edgar S Steenstra
- Faculty of Sciences, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Yanhao Lin
- Faculty of Sciences, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Dian Dankers
- Faculty of Sciences, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Nachiketa Rai
- Department of Earth and Planetary Sciences, Birkbeck University of London, London, UK
- Department of Earth Sciences, Mineral and Planetary Sciences Division, Natural History Museum, London, UK
| | - Jasper Berndt
- Institute of Mineralogy, University of Münster, Münster, Germany
| | - Sergei Matveev
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Wim van Westrenen
- Faculty of Sciences, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Day JMD, Moynier F, Shearer CK. Late-stage magmatic outgassing from a volatile-depleted Moon. Proc Natl Acad Sci U S A 2017; 114:9547-9551. [PMID: 28827322 PMCID: PMC5594690 DOI: 10.1073/pnas.1708236114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = -13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
Collapse
Affiliation(s)
- James M D Day
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244;
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | - Charles K Shearer
- Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
13
|
Kato C, Moynier F. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. SCIENCE ADVANCES 2017; 3:e1700571. [PMID: 28782027 PMCID: PMC5533533 DOI: 10.1126/sciadv.1700571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/27/2017] [Indexed: 05/26/2023]
Abstract
The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon's formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth.
Collapse
Affiliation(s)
- Chizu Kato
- Institut de Physique du Globe de Paris, Université Paris Diderot, Institut Universitaire de France, Paris, France
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Institut Universitaire de France, Paris, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
14
|
Barnes JJ, Kring DA, Tartèse R, Franchi IA, Anand M, Russell SS. An asteroidal origin for water in the Moon. Nat Commun 2016; 7:11684. [PMID: 27244672 PMCID: PMC4895054 DOI: 10.1038/ncomms11684] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
The Apollo-derived tenet of an anhydrous Moon has been contested following measurement of water in several lunar samples that require water to be present in the lunar interior. However, significant uncertainties exist regarding the flux, sources and timing of water delivery to the Moon. Here we address those fundamental issues by constraining the mass of water accreted to the Moon and modelling the relative proportions of asteroidal and cometary sources for water that are consistent with measured isotopic compositions of lunar samples. We determine that a combination of carbonaceous chondrite-type materials were responsible for the majority of water (and nitrogen) delivered to the Earth-Moon system. Crucially, we conclude that comets containing water enriched in deuterium contributed significantly <20% of the water in the Moon. Therefore, our work places important constraints on the types of objects impacting the Moon ∼4.5-4.3 billion years ago and on the origin of water in the inner Solar System.
Collapse
Affiliation(s)
- Jessica J Barnes
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - David A Kring
- Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA
| | - Romain Tartèse
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, Sorbonne Universités, CNRS, UMPC &IRD, Paris 75005, France
| | - Ian A Franchi
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Mahesh Anand
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Sara S Russell
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|