1
|
Unique evidence of fluid alteration in the Kakowa (L6) ordinary chondrite. Sci Rep 2022; 12:5520. [PMID: 35414699 PMCID: PMC9005539 DOI: 10.1038/s41598-022-09465-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Meteorites preserve evidence of processes on their parent bodies, including alteration, metamorphism, and shock events. Here we show that the Kakowa (L6) ordinary chondrite (OC) preserves both shock-melt veins and pockets of detrital grains from a brecciated and altered object, including corundum, albite, silica, fayalite, forsterite, and margarite in a Pb- and Fe-rich matrix. Preservation of the observed mineralogy and texture requires a sequence of at least two impacts: first, a high-velocity collision formed the shock melt veins containing the high-pressure minerals ringwoodite, wadsleyite, majorite, and albitic jadeite; later, a low-velocity impact formed fractures and filled them with the detrital material. Oxygen and Pb isotope ratios suggest an OC origin for these detrital minerals. Although fluid alteration is common in carbonaceous chondrites, the discovery of margarite with an OC oxygen isotopic signature is novel. Kakowa extends both the impact and alteration history of L6 ordinary chondrites in general.
Collapse
|
2
|
Significant contribution of subseafloor microparticles to the global manganese budget. Nat Commun 2019; 10:400. [PMID: 30728355 PMCID: PMC6365551 DOI: 10.1038/s41467-019-08347-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/07/2019] [Indexed: 11/08/2022] Open
Abstract
Ferromanganese minerals are widely distributed in subseafloor sediments and on the seafloor in oceanic abyssal plains. Assessing their input, formation and preservation is important for understanding the global marine manganese cycle and associated trace elements. However, the extent of ferromanganese minerals buried in subseafloor sediments remains unclear. Here we show that abundant (108-109 particles cm-3) micrometer-scale ferromanganese mineral particles (Mn-microparticles) are found in the oxic pelagic clays of the South Pacific Gyre (SPG) from the seafloor to the ~100 million-year-old sediments above the basement. Three-dimensional micro-texture, and major and trace element compositional analyses revealed that these Mn-microparticles consist of poorly crystalline ferromanganese oxides precipitating from bottom water. Based on our findings, we extrapolate that 1.5-8.8 × 1028 Mn-microparticles, accounting for 1.28-7.62 Tt of manganese, are globally present in oxic subseafloor sediments. This estimate is at least two orders of magnitude larger than the manganese budget for nodules and crusts on the seafloor. Subseafloor Mn-microparticles thus contribute significantly to the global manganese budget.
Collapse
|
3
|
High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Sci Rep 2018; 8:9851. [PMID: 29959423 PMCID: PMC6026127 DOI: 10.1038/s41598-018-28191-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
We report the first discoveries of high-pressure minerals in the historical L6 chondrite fall Château-Renard, based on co-located Raman spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy and electron backscatter diffraction, electron microprobe analysis, and transmission electron microscopy (TEM) with selected-area electron diffraction. A single polished section contains a network of melt veins from ~40 to ~200 μm wide, with no cross-cutting features requiring multiple vein generations. We find high-pressure minerals in veins greater than ~50 μm wide, including assemblages of ringwoodite + wadsleyite, ringwoodite + wadsleyite + majorite-pyropess, and ahrensite + wadsleyite. In association with ahrensite + wadsleyite at both SEM and TEM scale, we find a sodic pyroxene whose Raman spectrum is indistinguishable from that of jadeite but whose composition and structure are those of omphacite. We discuss constraints on the impact record of this meteorite and the L-chondrites in general.
Collapse
|
4
|
A new high-pressure form of Mg 2SiO 4 highlighting diffusionless phase transitions of olivine. Sci Rep 2017; 7:17351. [PMID: 29229951 PMCID: PMC5725457 DOI: 10.1038/s41598-017-17698-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 11/18/2022] Open
Abstract
High-pressure polymorphism of olivine (α-phase of Mg2SiO4) is of particular interest for geophysicists aiming to understand the structure and dynamics of the Earth’s interior because of olivine’s prominent abundance in the upper mantle. Therefore, natural and synthetic olivine polymorphs have been actively studied in the past half century. Here, we report a new high-pressure polymorph, the ε*-phase, which was discovered in a heavily shocked meteorite. It occurs as nanoscale lamellae and has a topotaxial relationship with the host ringwoodite (γ-phase of Mg2SiO4). Olivine in the host rock entrapped in a shock-induced melt vein initially transformed into polycrystalline ringwoodite through a nucleation and growth mechanism. The ringwoodite grains then coherently converted into the ε*-phase by shear transformation during subsequent pressure release. This intermediate metastable phase can be formed by all Mg2SiO4 polymorphs via a shear transformation mechanism. Here, we propose high-pressure transformations of olivine that are enhanced by diffusionless processes, not only in shocked meteorites but also in thick and cold lithosphere subducting into the deep Earth.
Collapse
|
5
|
Gleason AE, Bolme CA, Lee HJ, Nagler B, Galtier E, Kraus RG, Sandberg R, Yang W, Langenhorst F, Mao WL. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation. Nat Commun 2017; 8:1481. [PMID: 29133910 PMCID: PMC5684137 DOI: 10.1038/s41467-017-01791-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages. Our understanding of shock metamorphism and thus the collision of planetary bodies is limited by a dependence on ex situ analyses. Here, the authors perform in situ analysis on shocked-produced densified glass and show that estimates of impactor size based on traditional techniques are likely inflated.
Collapse
Affiliation(s)
- A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA. .,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - E Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - R G Kraus
- Shock Physics, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - R Sandberg
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - W Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China.,HPSynC, Carnegie Institution of Washington, Argonne, IL, 60439, USA
| | - F Langenhorst
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, D-07745, Jena, Germany
| | - W L Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.,Geological Sciences, Stanford University, 367 Panama St., Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Bindi L, Chen M, Xie X. Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 2017; 7:42674. [PMID: 28198399 PMCID: PMC5309820 DOI: 10.1038/srep42674] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 11/30/2022] Open
Abstract
We report the first natural occurrence of the Fe-analogue of akimotoite, ilmenite-structured MgSiO3, a missing phase among the predicted high-pressure polymorphs of Fe-pyroxene, with the composition (Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)Σ=1.00Si1.00O3. The new mineral was approved by the International Mineralogical Association (IMA 2016-085) and named hemleyite in honour of Russell J. Hemley. It was discovered in an unmelted portion of the heavily shocked L6 Suizhou chondrite closely associated to olivine, clinoenstatite and Fe-bearing pyroxene with a composition nearly identical to that of hemleyite. We also report the first single-crystal X-ray diffraction study of a Si-bearing, ilmenite-structured phase. The fact that hemleyite formed in a meteorite exposed to high pressures (<20 GPa) and temperatures (<2000 °C) during impact-induced shocks indicates that it could play a crucial role at the bottom of the Earth’s mantle transition zone and within the uppermost lower mantle.
Collapse
Affiliation(s)
- Luca Bindi
- Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Florence, Italy.,CNR-Istituto di Geoscienze e Georisorse, Via La Pira 4, I-50121 Florence, Italy
| | - Ming Chen
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China
| | - Xiande Xie
- Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China.,Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|