1
|
Krüger JM, Choi CY, Lossada F, Wang P, Löschke O, Auhl D, Börner HG. Broadening the Chemical Space of Mussel-Inspired Polymerization: The Roll-out of a TCC-Polymer Platform with Thiol–Catechol Connectivities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jana M. Krüger
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Ching-Yi Choi
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Francisco Lossada
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| | - Peng Wang
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Oliver Löschke
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Dietmar Auhl
- Department of Polymer Materials and Technologies, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor Straße 2, 12489 Berlin, Germany
| |
Collapse
|
2
|
Yang Z, Zhao J, Emrick T. Functional Polymer Zwitterions as Reactive Surfactants for Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21898-21904. [PMID: 33942613 DOI: 10.1021/acsami.1c05955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the synthesis of sulfothetin (ST)-containing polymer zwitterions and their use as polymer surfactants for stabilizing emulsion droplets and for capturing and transporting nanoparticles (NPs) through a flowing aqueous fluid. In contrast to conventional zwitterions, which are chemically inert, the multifunctional ST-containing copolymers we describe both participate in droplet stabilization and embed reactive functionality directly into the zwitterionic framework. Advantageously including these ST zwitterions in phosphorylcholine (PC)-containing copolymers proved particularly useful for producing surfactants that contributed characteristics of droplet stabilization and interfacial reactivity. This was demonstrated by NP pickup, or "capture", experiments that were performed by circulating ST-coated emulsion droplets across a substrate, in a flow cell, containing amine-functionalized silica NPs. The resultant NP adherence to the fluid-fluid interface of the droplets hinged on the available reactivity of both the electrophilic (from ST) and nucleophilic (from the NPs) components as well as the solution pH and extent of amine functionality on the NPs.
Collapse
Affiliation(s)
- Zhefei Yang
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| | - Jing Zhao
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| | - Todd Emrick
- Polymer Science & Engineering Department Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst 01003, Massachusetts, United States
| |
Collapse
|
3
|
Chen H, Zhao R, Hu J, Wei Z, McClements DJ, Liu S, Li B, Li Y. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5412-5425. [PMID: 32320613 DOI: 10.1021/acs.jafc.9b08301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a polysaccharide widely used as a structuring agent in foods and other materials because of its positive charge (amino groups). At present, however, it is difficult to form and stabilize emulsions using chitosan due to its high hydrophilicity. In this study, oil-in-water emulsions were prepared using a one-pot green-chemistry method. The chitosan and aldehyde molecules were in situ interfacially conjugated during homogenization, which promoted the adsorption of chitosan onto the oil droplet surfaces where they created a protective coating. The universality of this method was verified by using chitosan with different molecular weights and four kinds of natural aldehydes [cinnamaldehyde (CA), citral (CT), citronella (CN), and vanillin (VL)]. Chitosan with higher molecular weight facilitated the formation of emulsions. By harnessing the dynamic covalent nature of imine bonds, chitosan emulsions with an imine link display dynamic behavior with acid-catalyzed hydrolysis. The aldehyde structure could control the pH point of trigger for breakdown of emulsions, which was 1.0, 3.0, 4.0, and 4.0 for CA emulsion, CT emulsion, CN emulsion, and VL emulsion, respectively. At pH 6.5, aldehyde helped to decrease the interfacial tension of chitosan to about 10 mN/m, while this value would increase if the pH decreased by adding acid during the measurement. Chemical kinetics studies indicated that the hydrophobicity and conjugation effect of the aldehyde together determined the trigger points and properties of the emulsion. Finally, we used the optimized emulsions to encapsulate and control the release of curcumin. The gastric release behavior of the curcumin depended on aldehyde structure: VL > CN > CT ≈ CA. Hence, a tailor-made trigger release emulsion system can be achieved by rational selection and design of aldehyde structure to control hydrophobicity and conjugation effect of aldehydes.
Collapse
Affiliation(s)
- Huanle Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Owusu-Nkwantabisah S. Functional dropwise condensation patterning and region-selective colloidal assembly. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Moulay S. Recent Trends in Mussel-Inspired Catechol-Containing Polymers (A Review). ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/340301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syntheses and applications of mussel-inspired polymeric materials have gained a foothold in research in recent years. Mussel-inspired chemistry coupled to Michael addition and Schiff’s base reactions was the key success for this intensive research. Unequivocally, The basic building brick of these materials is catechol-containing moiety, namely, 3,4-dihydroxyphenyl-L-alanine (L-DOPA or DOPA) and dopamine (DA). These catechol-based units within the chemical structure of the material ensure chiefly its adhesive characteristic to adherends of different natures. The newly-made catechol-bearing polymeric materials exhibit unique features, implying their importance in several uses and applications. Technology advent is being advantaged with these holdfast mussel protein-like materials. This review sheds light into the recent advances of such mussel-inspired materials for their adhesion capacity to several substrata of different natures, and for their applications mainly in antifouling coatings and nanoparticles technology.
Collapse
Affiliation(s)
- Saad Moulay
- Molecular and Macromolecular Chemistry-Physics Laboratory, Department of Process Engineering, Faculty of Technology, Saâd Dahlab University of Blida, B.P. 270, Soumâa Road, 09000, Blida, Algeria
| |
Collapse
|
6
|
Feng J, Ton XA, Zhao S, Paez JI, Del Campo A. Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance. Biomimetics (Basel) 2017; 2:E23. [PMID: 31105184 PMCID: PMC6352675 DOI: 10.3390/biomimetics2040023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol) (PEG)⁻catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation) and cross-linking conditions (pH, oxidant concentration, etc.) have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG⁻catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold) the performance of cyanoacrylate, fibrin, and PEG⁻catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG⁻catechol-based tissue glues for load-bearing surgery applications.
Collapse
Affiliation(s)
- Jun Feng
- INM ⁻ Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
| | - Xuan-Anh Ton
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | - Shifang Zhao
- INM ⁻ Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
| | - Julieta I Paez
- INM ⁻ Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Aránzazu Del Campo
- INM ⁻ Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|