1
|
Zuo L, Zhuang Q, Ye L, Yan Y, Zheng X. Unveiling the Decisive Factor for the Sharp Transition in the Scanning Tunneling Spectroscopy of a Single Nickelocene Molecule. J Phys Chem Lett 2022; 13:11262-11270. [PMID: 36448930 DOI: 10.1021/acs.jpclett.2c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscopy (STM) has been utilized to realize the precise measurement and control of local spin states. Experiments have demonstrated that when a nickelocene (Nc) molecule is attached to the apex of an STM tip, the dI/dV spectra exhibit a sharp or a smooth transition when the tip is displaced toward the substrate. However, what leads to the two distinct types of transitions remains unclear, and more intriguingly, the physical origin of the abrupt change in the line shape of dI/dV spectra remains unclear. To clarify these intriguing issues, we perform first-principles-based simulations on the STM tip control process for the Cu tip/Nc/Cu(100) junction. In particular, we find that the suddenly enhanced hybridization between the d orbitals on the Ni ion and the metallic bands in the substrate leads to Kondo correlation overwhelming spin excitation, which is the main cause of the sharp transition in the dI/dV spectra observed experimentally.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingfeng Zhuang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Li X, Zhu L, Li B, Li J, Gao P, Yang L, Zhao A, Luo Y, Hou J, Zheng X, Wang B, Yang J. Molecular molds for regularizing Kondo states at atom/metal interfaces. Nat Commun 2020; 11:2566. [PMID: 32444665 PMCID: PMC7244723 DOI: 10.1038/s41467-020-16402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/27/2020] [Indexed: 11/12/2022] Open
Abstract
Adsorption of magnetic transition metal atoms on a metal surface leads to the formation of Kondo states at the atom/metal interfaces. However, the significant influence of surrounding environment presents challenges for potential applications. In this work, we realize a novel strategy to regularize the Kondo states by moving a CoPc molecular mold on an Au(111) surface to capture the dispersed Co adatoms. The symmetric and ordered structures of the atom-mold complexes, as well as the strong dπ-π bonding between the Co adatoms and conjugated isoindole units, result in highly robust and uniform Kondo states at the Co/Au(111) interfaces. Even more remarkably, the CoPc further enables a fine tuning of Kondo states through the molecular-mold-mediated superexchange interactions between Co adatoms separated by more than 12 Å. Being highly precise, efficient and reproducible, the proposed molecular mold strategy may open a new horizon for the construction and control of nano-sized quantum devices.
Collapse
Affiliation(s)
- Xiangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingcheng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengfei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Longqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aidi Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianguo Hou
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Heinrich BW, Ehlert C, Hatter N, Braun L, Lotze C, Saalfrank P, Franke KJ. Control of Oxidation and Spin State in a Single-Molecule Junction. ACS NANO 2018; 12:3172-3177. [PMID: 29489330 DOI: 10.1021/acsnano.8b00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations.
Collapse
Affiliation(s)
- Benjamin W Heinrich
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christopher Ehlert
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
- Department of Chemistry , Wilfrid Laurier University , 75 University Avenue West , Waterloo , Ontario N2L3C5 , Canada
| | - Nino Hatter
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Lukas Braun
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Peter Saalfrank
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
| | - Katharina J Franke
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
4
|
Controlled spin switching in a metallocene molecular junction. Nat Commun 2017; 8:1974. [PMID: 29215014 PMCID: PMC5719446 DOI: 10.1038/s41467-017-02151-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/09/2017] [Indexed: 12/01/2022] Open
Abstract
The active control of a molecular spin represents one of the main challenges in molecular spintronics. Up to now spin manipulation has been achieved through the modification of the molecular structure either by chemical doping or by external stimuli. However, the spin of a molecule adsorbed on a surface depends primarily on the interaction between its localized orbitals and the electronic states of the substrate. Here we change the effective spin of a single molecule by modifying the molecule/metal interface in a controlled way using a low-temperature scanning tunneling microscope. A nickelocene molecule reversibly switches from a spin 1 to 1/2 when varying the electrode–electrode distance from tunnel to contact regime. This switching is experimentally evidenced by inelastic and elastic spin-flip mechanisms observed in reproducible conductance measurements and understood using first principle calculations. Our work demonstrates the active control over the spin state of single molecule devices through interface manipulation. Manipulating spin states of molecules in a controllable manner is essential to develop the molecule-based spintronics technologies. Here, Ormaza et al. show how to use the interaction between a single metallocene molecule and a metallic surface to reversibly switch spin from 1 to ½ in a junction.
Collapse
|
5
|
Schwarz M, Riss A, Garnica M, Ducke J, Deimel PS, Duncan DA, Thakur PK, Lee TL, Seitsonen AP, Barth JV, Allegretti F, Auwärter W. Corrugation in the Weakly Interacting Hexagonal-BN/Cu(111) System: Structure Determination by Combining Noncontact Atomic Force Microscopy and X-ray Standing Waves. ACS NANO 2017; 11:9151-9161. [PMID: 28872822 DOI: 10.1021/acsnano.7b04022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems. To this end, we employ complementary techniques including high-resolution noncontact atomic force microscopy, STM, low-energy electron diffraction, X-ray photoelectron spectroscopy, the X-ray standing wave method, and density functional theory. Our multimethod study yields a comprehensive, quantitative structure determination including the adsorption height and the corrugation of the sp2 bonded h-BN layer on Cu(111). Based on the atomic contrast in atomic force microscopy measurements, we derive a measurable-hitherto unrecognized-geometric corrugation of the h-BN monolayer. This experimental approach allows us to spatially resolve minute height variations in low-dimensional nanostructures, thus providing a benchmark for theoretical modeling. Regarding potential applications, e.g., as a template or catalytically active support, the recognition of h-BN on Cu(111) as a weakly bonded and moderately corrugated overlayer is highly relevant.
Collapse
Affiliation(s)
- Martin Schwarz
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Alexander Riss
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Manuela Garnica
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Jacob Ducke
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Peter S Deimel
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - David A Duncan
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pardeep Kumar Thakur
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Tien-Lin Lee
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ari Paavo Seitsonen
- Département de Chimie, École Normale Supérieure , 24 rue Lhomond, F-75005 Paris, France
| | - Johannes V Barth
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | | | - Willi Auwärter
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| |
Collapse
|