1
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Trumbo SK, Brown ME. The distribution of CO 2 on Europa indicates an internal source of carbon. Science 2023; 381:1308-1311. [PMID: 37733851 DOI: 10.1126/science.adg4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean, the chemistry of which is largely unknown. Carbon dioxide (CO2) has previously been detected on the surface of Europa, but it was not possible to determine whether it originated from subsurface ocean chemistry, was delivered by impacts, or was produced on the surface by radiation processing of impact-delivered material. We mapped the distribution of CO2 on Europa using observations obtained with the James Webb Space Telescope (JWST). We found a concentration of CO2 within Tara Regio, a recently resurfaced terrain. This indicates that the CO2 is derived from an internal carbon source. We propose that the CO2 formed in the internal ocean, although we cannot rule out formation on the surface through radiolytic conversion of ocean-derived organics or carbonates.
Collapse
Affiliation(s)
- Samantha K Trumbo
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael E Brown
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Nordheim TA, Castillo-Rogez JC, Villarreal MN, Scully JEC, Costello ES. The Radiation Environment of Ceres and Implications for Surface Sampling. ASTROBIOLOGY 2022; 22:509-519. [PMID: 35447049 DOI: 10.1089/ast.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceres is a large water-rich dwarf planet located within the asteroid belt. Its surface displays evidence of material sourced from a deep subsurface liquid brine layer within recent geologic time, making it a candidate ocean world with possible present-day activity. However, Ceres lacks a substantial atmosphere and likely does not possess a global magnetic field. Therefore, any material emplaced or exposed on the surface will be subject to weathering by charged particles of solar and galactic origin. We have evaluated the effect of charged particle radiation on material within the near-surface of Ceres and find that the timescale for radiation-induced modification and destruction of organics and endogenic material is ∼100 Myr to 1 Gyr within the top 10-20 cm of the surface. Furthermore, we find that the timescale for sterilization of any putative living organisms contained within material at these depths is <500 kyr. Future missions to the surface may therefore consider targeting regions with geologic ages that fall between these two timescales to avoid the risk of backward contamination while ensuring that sampled material is not heavily radiation processed.
Collapse
Affiliation(s)
- T A Nordheim
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J C Castillo-Rogez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M N Villarreal
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J E C Scully
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - E S Costello
- University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Hawaii Institute of Geophysics and Planetology, Honolulu, Hawaii, USA
| |
Collapse
|
5
|
Shi X, Castillo-Rogez J, Hsieh H, Hui H, Ip WH, Lei H, Li JY, Tosi F, Zhou L, Agarwal J, Barucci A, Beck P, Bagatin AC, Capaccioni F, Coates AJ, Cremonese G, Duffard R, Grande M, Jaumann R, Jones GH, Kallio E, Lin Y, Mousis O, Nathues A, Oberst J, Sierks H, Ulamec S, Wang M. GAUSS - genesis of asteroids and evolution of the solar system: A sample return mission to Ceres. EXPERIMENTAL ASTRONOMY 2021; 54:713-744. [PMID: 36915624 PMCID: PMC9998589 DOI: 10.1007/s10686-021-09800-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2021] [Indexed: 06/18/2023]
Abstract
The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history. Recent evidence for the existence of a subsurface ocean on Ceres and the complex geochemistry suggest past habitability and even the potential for ongoing habitability. GAUSS will return samples from Ceres with the aim of answering the following top-level scientific questions: What is the origin of Ceres and what does this imply for the origin of water and other volatiles in the inner Solar System?What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of dwarf planets?What are the astrobiological implications of Ceres? Is it still habitable today?What are the mineralogical connections between Ceres and our current collections of carbonaceous meteorites?
Collapse
Affiliation(s)
- Xian Shi
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Present Address: Shanghai Astronomical Observatory, Shanghai, China
| | | | | | - Hejiu Hui
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Wing-Huen Ip
- Institute of Astronomy and Space Science, National Central University, Chung Li, Taiwan
| | - Hanlun Lei
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | | | - Federico Tosi
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Liyong Zhou
- School of Astronomy and Space Science, Nanjing University, Nanjing, China
| | - Jessica Agarwal
- Max Planck Institute for Solar System Research, Göttingen, Germany
- Institute for Geophysics and Extraterrestrial Physics, Technical University Braunschweig, Braunschweig, Germany
| | - Antonella Barucci
- LESIA-Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, F-92195 Meudon, Principal Cedex, France
| | - Pierre Beck
- CNRS Institut de Planétologie et d’Astrophysique, Univ. Grenoble Alpes, Grenoble, France
| | - Adriano Campo Bagatin
- Universidad de Alicante, Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Alicante, Spain
| | - Fabrizio Capaccioni
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Andrew J. Coates
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | | | - Rene Duffard
- Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
| | | | - Ralf Jaumann
- Institute of Geological Sciences, Free University of Berlin, Berlin, Germany
| | - Geraint H. Jones
- Mullard Space Science Laboratory, University College London, Surrey, UK
| | - Esa Kallio
- School of Electrical Engineering, Aalto University, Aalto, Finland
| | - Yangting Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Andreas Nathues
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Jürgen Oberst
- DLR Institute of Planetary Research, Berlin, Germany
| | - Holger Sierks
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Stephan Ulamec
- DLR Space Operations and Astronaut Training, Cologne, Germany
| | - Mingyuan Wang
- National Astronomical Observatory, Chinese Academy of Science, Beijing, China
| | | |
Collapse
|
6
|
Abstract
Ceres is the largest object in the main belt and it is also the most water-rich body in the inner solar system besides the Earth. The discoveries made by the Dawn Mission revealed that the composition of Ceres includes organic material, with a component of carbon globally present and also a high quantity of localized aliphatic organics in specific areas. The inferred mineralogy of Ceres indicates the long-term activity of a large body of liquid water that produced the alteration minerals discovered on its surface, including ammonia-bearing minerals. To explain the presence of ammonium in the phyllosilicates, Ceres must have accreted organic matter, ammonia, water and carbon present in the protoplanetary formation region. It is conceivable that Ceres may have also processed and transformed its own original organic matter that could have been modified by the pervasive hydrothermal alteration. The coexistence of phyllosilicates, magnetite, carbonates, salts, organics and a high carbon content point to rock–water alteration playing an important role in promoting widespread carbon occurrence.
Collapse
|
7
|
Laboratory Investigations Coupled to VIR/Dawn Observations to Quantify the Large Concentrations of Organic Matter on Ceres. MINERALS 2021. [DOI: 10.3390/min11070719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic matter directly observed at the surface of an inner planetary body is quite infrequent due to the usual low abundance of such matter and the limitation of the infrared technique. Fortuitously, the Dawn mission has revealed, thanks to the Visible and InfraRed mapping spectrometer (VIR), large areas rich in organic matter at the surface of Ceres, near Ernutet crater. The origin of the organic matter and its abundance in association with minerals, as indicated by the low altitude VIR data, remains unclear, but multiple lines of evidence support an endogenous origin. Here, we report an experimental investigation to determine the abundance of the aliphatic carbon signature observed on Ceres. We produced relevant analogues containing ammoniated-phyllosilicates, carbonates, aliphatic carbons (coals), and magnetite or amorphous carbon as darkening agents, and measured their reflectance by infrared spectroscopy. Measurements of these organic-rich analogues were directly compared to the VIR spectra taken from different locations around Ernutet crater. We found that the absolute reflectance of our analogues is at least two orders of magnitude higher than Ceres, but the depths of absorption bands match nicely the ones of the organic-rich Ceres spectra. The choices of the different components are discussed in comparison with VIR data. Relative abundances of the components are extrapolated from the spectra and mixture composition, considering that the differences in reflectance level is mainly due to optical effects. Absorption bands of Ceres’ organic-rich spectra are best reproduced by around 20 wt.% of carbon (a third being aliphatic carbons), in association with around 20 wt.% of carbonates, 15 wt.% of ammoniated-phyllosilicate, 20 wt.% of Mg-phyllosilicates, and 25 wt.% of darkening agent. Results also highlight the pertinence to use laboratory analogues in addition to models for planetary surface characterization. Such large quantities of organic materials near Ernutet crater, in addition to the amorphous carbon suspected on a global scale, requires a concentration mechanism whose nature is still unknown but that could potentially be relevant to other large volatile-rich bodies.
Collapse
|
8
|
Castillo-Rogez JC, Neveu M, Scully JEC, House CH, Quick LC, Bouquet A, Miller K, Bland M, De Sanctis MC, Ermakov A, Hendrix AR, Prettyman TH, Raymond CA, Russell CT, Sherwood BE, Young E. Ceres: Astrobiological Target and Possible Ocean World. ASTROBIOLOGY 2020; 20:269-291. [PMID: 31904989 DOI: 10.1089/ast.2018.1999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.
Collapse
Affiliation(s)
| | - Marc Neveu
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University of Maryland College Park, Greenbelt, Maryland
| | - Jennifer E C Scully
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher H House
- Department of Geosciences,Penn State Astrobiology Research Center, The Pennsylvania State University, University Park, Pennsylvania
| | - Lynnae C Quick
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Alexis Bouquet
- LAM (Laboratoire d'Astrophysique de Marseille), Aix Marseille Université, CNRS, UMR 7326, Marseille, France
| | - Kelly Miller
- Southwest Research Institute, San Antonio, Texas
| | | | | | - Anton Ermakov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher T Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| | | | - Edward Young
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| |
Collapse
|
9
|
Rousseau B, Raponi A, Ciarniello M, Ammannito E, Carrozzo FG, De Sanctis MC, Fonte S, Frigeri A, Tosi F. Correction of the VIR-visible data set from the Dawn mission. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123110. [PMID: 31893819 DOI: 10.1063/1.5123362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Data acquired at Ceres by the visible channel of the Visible and InfraRed mapping spectrometer (VIR) on board the NASA Dawn spacecraft are affected by the temperatures of both the visible (VIS) and the infrared (IR) sensors, which are, respectively, a charged coupled device and a HgCdTe array. The variations of the visible channel temperatures measured during the sessions of acquisitions are correlated with the variations in the spectral slope and shape for all the mission phases. The IR channel temperature is more stable during the acquisitions; nonetheless, it is characterized by a bimodal distribution whether the cryocooler (and, therefore, the IR channel) is used or not during the visible channel operations. When the infrared channel temperature is high (175 K, i.e., not in use and with the cryocooler off), an additional negative slope and a distortion are observed in the spectra of the visible channel. We developed an empirical correction based on a reference spectrum for the whole dataset; it is designed to correct the two issues related to the sensor temperatures that we have identified. The reference spectrum is calculated to be representative of the global Ceres' surface. It is also made of the data acquired when the visible and infrared channel temperatures are equal to the ones measured during an observation of the Arcturus star by VIR, which is consistent with several ground-based observations. The developed correction allows reliable analysis and mapping to be performed by minimizing the artifacts induced by fluctuations of the VIS temperature. Thanks to this correction, a direct comparison between different mission phases during which the VIR experienced different visible and infrared channel temperatures is now possible.
Collapse
Affiliation(s)
- B Rousseau
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - A Raponi
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - M Ciarniello
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - E Ammannito
- Italian Space Agency (ASI), Via del Politecnico, 00133 Rome, Italy
| | - F G Carrozzo
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - M C De Sanctis
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - S Fonte
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - A Frigeri
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - F Tosi
- IAPS-INAF, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
10
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
11
|
|