1
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Alaçamlı E, Naidoo T, Güler MN, Sağlıcan E, Aktürk Ş, Mapelli I, Vural KB, Somel M, Malmström H, Günther T. READv2: advanced and user-friendly detection of biological relatedness in archaeogenomics. Genome Biol 2024; 25:216. [PMID: 39135108 PMCID: PMC11318251 DOI: 10.1186/s13059-024-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
The advent of genome-wide ancient DNA analysis has revolutionized our understanding of prehistoric societies. However, studying biological relatedness in these groups requires tailored approaches due to the challenges of analyzing ancient DNA. READv2, an optimized Python3 implementation of the most widely used tool for this purpose, addresses these challenges while surpassing its predecessor in speed and accuracy. For sufficient amounts of data, it can classify up to third-degree relatedness and differentiate between the two types of first-degree relatedness, full siblings and parent-offspring. READv2 enables user-friendly, efficient, and nuanced analysis of biological relatedness, facilitating a deeper understanding of past social structures.
Collapse
Affiliation(s)
- Erkin Alaçamlı
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Present Address: Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thijessen Naidoo
- Ancient DNA Unit, Science for Life Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Merve N Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Ekin Sağlıcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Şevval Aktürk
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Igor Mapelli
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
- Ancient DNA Unit, Science for Life Laboratory, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Gretzinger J, Schmitt F, Mötsch A, Carlhoff S, Lamnidis TC, Huang Y, Ringbauer H, Knipper C, Francken M, Mandt F, Hansen L, Freund C, Posth C, Rathmann H, Harvati K, Wieland G, Granehäll L, Maixner F, Zink A, Schier W, Krausse D, Krause J, Schiffels S. Evidence for dynastic succession among early Celtic elites in Central Europe. Nat Hum Behav 2024; 8:1467-1480. [PMID: 38831077 PMCID: PMC11343710 DOI: 10.1038/s41562-024-01888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
The early Iron Age (800 to 450 BCE) in France, Germany and Switzerland, known as the 'West-Hallstattkreis', stands out as featuring the earliest evidence for supra-regional organization north of the Alps. Often referred to as 'early Celtic', suggesting tentative connections to later cultural phenomena, its societal and population structure remain enigmatic. Here we present genomic and isotope data from 31 individuals from this context in southern Germany, dating between 616 and 200 BCE. We identify multiple biologically related groups spanning three elite burials as far as 100 km apart, supported by trans-regional individual mobility inferred from isotope data. These include a close biological relationship between two of the richest burial mounds of the Hallstatt culture. Bayesian modelling points to an avuncular relationship between the two individuals, which may suggest a practice of matrilineal dynastic succession in early Celtic elites. We show that their ancestry is shared on a broad geographic scale from Iberia throughout Central-Eastern Europe, undergoing a decline after the late Iron Age (450 BCE to ~50 CE).
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felicitas Schmitt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Angela Mötsch
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Selina Carlhoff
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Yilei Huang
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Corina Knipper
- Curt Engelhorn Zentrum Archäometrie gGmbH, Mannheim, Germany
| | - Michael Francken
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Franziska Mandt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Leif Hansen
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Cäcilia Freund
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hannes Rathmann
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katerina Harvati
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
- DFG Center for Advanced Studies in the Humanities 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Günther Wieland
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Lena Granehäll
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Wolfram Schier
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Dirk Krausse
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany.
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
4
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Antonio ML, Weiß CL, Gao Z, Sawyer S, Oberreiter V, Moots HM, Spence JP, Cheronet O, Zagorc B, Praxmarer E, Özdoğan KT, Demetz L, Gelabert P, Fernandes D, Lucci M, Alihodžić T, Amrani S, Avetisyan P, Baillif-Ducros C, Bedić Ž, Bertrand A, Bilić M, Bondioli L, Borówka P, Botte E, Burmaz J, Bužanić D, Candilio F, Cvetko M, De Angelis D, Drnić I, Elschek K, Fantar M, Gaspari A, Gasperetti G, Genchi F, Golubović S, Hukeľová Z, Jankauskas R, Vučković KJ, Jeremić G, Kaić I, Kazek K, Khachatryan H, Khudaverdyan A, Kirchengast S, Korać M, Kozlowski V, Krošláková M, Kušan Špalj D, La Pastina F, Laguardia M, Legrand S, Leleković T, Leskovar T, Lorkiewicz W, Los D, Silva AM, Masaryk R, Matijević V, Cherifi YMS, Meyer N, Mikić I, Miladinović-Radmilović N, Milošević Zakić B, Nacouzi L, Natuniewicz-Sekuła M, Nava A, Neugebauer-Maresch C, Nováček J, Osterholtz A, Paige J, Paraman L, Pieri D, Pieta K, Pop-Lazić S, Ruttkay M, Sanader M, Sołtysiak A, Sperduti A, Stankovic Pesterac T, Teschler-Nicola M, Teul I, Tončinić D, Trapp J, Vulović D, Waliszewski T, Walter D, Živanović M, Filah MEM, Čaušević-Bully M, Šlaus M, Borić D, Novak M, Coppa A, Pinhasi R, Pritchard JK. Stable population structure in Europe since the Iron Age, despite high mobility. eLife 2024; 13:e79714. [PMID: 38288729 PMCID: PMC10827293 DOI: 10.7554/elife.79714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire's mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.
Collapse
Affiliation(s)
- Margaret L Antonio
- Biomedical Informatics Program, Stanford UniversityStanfordUnited States
| | - Clemens L Weiß
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Ziyue Gao
- Department of Genetics, University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Hannah M Moots
- Stanford Archaeology Center, Stanford UniversityStanfordUnited States
- University of Chicago, Department of Human GeneticsChicagoUnited States
| | - Jeffrey P Spence
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Elisa Praxmarer
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | | | - Lea Demetz
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
- CIAS, Department of Life Sciences, University of CoimbraCoimbraPortugal
| | - Michaela Lucci
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza UniversityRomeItaly
| | | | - Selma Amrani
- LBEIG, Population Genetics & Conservation Unit, Department of Cellular and Molecular Biology – Faculty of Biological Sciences, University of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| | - Pavel Avetisyan
- National Academy of Sciences of Armenia, Institute of Archaeology and EthnographyYerevanArmenia
| | - Christèle Baillif-Ducros
- French National Institute for Preventive Archaeological Research (INRAP)/CAGT UMR 5288ToulouseFrance
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological ResearchZagrebCroatia
| | | | | | - Luca Bondioli
- Dipartimento dei Beni Culturali, Archeologia, Storia dell'arte, del Cinema e della Musica, Università di PadovaPadovaItaly
| | - Paulina Borówka
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of LodzŁódźPoland
| | - Emmanuel Botte
- Aix Marseille Université, CNRS, Centre Camille JullianAix-en-ProvenceFrance
| | | | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | | | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Daniela De Angelis
- Museo Archeologico Nazionale di Tarquinia, Direzione Regionale Musei LazioRomeItaly
| | - Ivan Drnić
- Archaeological Museum in ZagrebZagrebCroatia
| | - Kristián Elschek
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | - Mounir Fantar
- Département des Monuments et des Sites Antiques - Institut National du Patrimoine INPTunisTunisia
| | - Andrej Gaspari
- University of Ljubljana, Faculty of Arts, Department for ArchaeologyLjubljanaSlovenia
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e NuoroSassariItaly
| | - Francesco Genchi
- Department of Oriental Studies, Sapienza University of RomeRomeItaly
| | | | - Zuzana Hukeľová
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | | | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Kevin Kazek
- Université de Lorraine, Centre de Recherche Universitaire Lorrain d' Histoire (CRULH)NancyFrance
| | - Hamazasp Khachatryan
- Department of Archaeologi, Shirak Centere of Armenological Studies, National Academy of Sciences Republic of ArmeniaGyumriArmenia
| | - Anahit Khudaverdyan
- Institute of Archaeology and Ethnography of the National Academy of Sciences of the Republic of ArmeniaYerevanArmenia
| | - Sylvia Kirchengast
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
| | | | | | - Mária Krošláková
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | | | - Marie Laguardia
- UMR 7041 ArScAn / French Institute of the Near EastBeirutLebanon
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and ArtsZagrebCroatia
| | - Tamara Leskovar
- University of Ljubljana, Faculty of Arts, Department for ArchaeologyLjubljanaSlovenia
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of LodzŁódźPoland
| | | | - Ana Maria Silva
- CIAS, Department of Life Sciences, University of CoimbraCoimbraPortugal
- CEF - University of CoimbraCoimbraPortugal
- UNIARQ - University of LisbonLisbonPortugal
| | - Rene Masaryk
- Skupina STIK Zavod za preučevanje povezovalnih področij preteklosti in sedanjostiLjubljanaSlovenia
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Yahia Mehdi Seddik Cherifi
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Cardiolo-Oncology Research Collaborative Group (CORCG), Faculty of Medicine, Benyoucef Benkhedda UniversityAlgiersAlgeria
- Molecular Pathology, University Paul Sabatier Toulouse IIIToulouseFrance
| | - Nicolas Meyer
- French National Institute for Preventive Archaeological Research (INRAP)MetzFrance
| | - Ilija Mikić
- Institute of Archaeology BelgradeBelgradeSerbia
| | | | | | - Lina Nacouzi
- L’Institut français du Proche-OrientBeirutLebanon
| | - Magdalena Natuniewicz-Sekuła
- Institute of Archaeology and Ethnology Polish Academy of Sciences, Centre of Interdisciplinary Archaeological ResearchWarsawPoland
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of RomeRomeItaly
| | - Christine Neugebauer-Maresch
- Austrian Archaeological Institute, Austrian Academy of SciencesViennaAustria
- Institute of Prehistory and Early History, University of ViennaViennaAustria
| | - Jan Nováček
- Thuringia State Service for Cultural Heritage and Archaeology WeimarThuringiaGermany
- Institute of Anatomy and Cell Biology, University Medical Centre, Georg-August University of GöttingenGöttingenGermany
| | | | | | | | | | - Karol Pieta
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | | | - Matej Ruttkay
- Institute of Archaeology, Slovak Academy of SciencesNitraSlovakia
| | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | | | - Alessandra Sperduti
- Bioarchaeology Service, Museum of CivilizationsRomeItaly
- Dipartimento Asia, Africa e Mediterraneo, Università degli Studi di Napoli “L’Orientale”NaplesItaly
| | | | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Department of Anthropology, Natural History Museum ViennaViennaAustria
| | - Iwona Teul
- Chair and Department of Normal Anatomy, Faculty of Medicine and Dentistry, Pomeranian Medical UniversitySzczecinPoland
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of ZagrebZagrebCroatia
| | - Julien Trapp
- Musée de La Cour d'Or, Eurométropole de MetzMetzFrance
| | | | | | - Diethard Walter
- Thuringia State Service for Cultural Heritage and Archaeology WeimarThuringiaGermany
| | - Miloš Živanović
- Department of Archeology, Center for Conservation and Archeology of MontenegroCetinjeMontenegro
| | | | | | - Mario Šlaus
- Anthropological Centre, Croatian Academy of Sciences and ArtsZagrebCroatia
| | - Dušan Borić
- Department of Environmental Biology, Sapienza University of RomeRomeItaly
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological ResearchZagrebCroatia
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Department of Environmental Biology, Sapienza University of RomeRomeItaly
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of ViennaViennaAustria
- Human Evolution and Archaeological Sciences, University of ViennaViennaAustria
| | - Jonathan K Pritchard
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Coia V, Paladin A, Zingale S, Wurst C, Croze M, Maixner F, Zink A. Ancestry and kinship in a Late Antiquity-Early Middle Ages cemetery in the Eastern Italian Alps. iScience 2023; 26:108215. [PMID: 37953960 PMCID: PMC10637928 DOI: 10.1016/j.isci.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
In South Tyrol (Eastern Italian Alps), during Late Antiquity-Early Middle Ages, archeological records indicate cultural hybridization among alpine groups and peoples of various origin. Using paleogenomics, we reconstructed the ancestry of 20 individuals (4th-7th cent. AD) from a cemetery to analyze whether they had heterogeneous or homogeneous ancestry and to study their social organization. The results revealed a primary genetic ancestry from southern Europe and additional ancestries from south-western, western, and northern Europe, suggesting that cultural hybridization was accompanied by complex genetic admixture. Kinship analyses found no genetic relatedness between the only two individuals buried with grave goods. Instead, a father-son pair was discovered in one multiple grave, together with unrelated individuals and one possible non-local female. These genetic findings indicate the presence of a high social status familia, which is supported by the cultural materials and the proximity of the grave to the most sacred area of the church.
Collapse
Affiliation(s)
- Valentina Coia
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Alice Paladin
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Stefania Zingale
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Christina Wurst
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Myriam Croze
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| |
Collapse
|
7
|
Gînguță A, Kovács B, Schütz O, Tihanyi B, Nyerki E, Maár K, Maróti Z, Varga GI, Băcueț-Crișan D, Keresztes T, Török T, Neparáczki E. Genetic identification of members of the prominent Báthory aristocratic family. iScience 2023; 26:107911. [PMID: 37810237 PMCID: PMC10550723 DOI: 10.1016/j.isci.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The Báthory family was one of the most powerful noble families in the medieval Hungarian Kingdom. Their influence peaked during the Ottoman occupation of Hungary, when the only partially autonomous region of the country was Transylvania, under Turkish protectorate. Several members of the family became Princes of Transylvania, and one of them, István Báthory, was also the elected King of Poland. We hereby present the first genetic data about this extinct family. Archaeological excavations in Pericei, a settlement now part of Romania, revealed the former family chapel of the Báthory family. Through this work, two Báthory family members were successfully identified among the 13 skeletons found at the site. The presence of Y chromosome haplogroup R-S498 fits the historical account describing the family's German (Swabian) origins. Their genomic composition also indicates a family of Germanic origin that intermixed with medieval Hungarians.
Collapse
Affiliation(s)
- Alexandra Gînguță
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Oszkár Schütz
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Tihanyi
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Emil Nyerki
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Kitti Maár
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Gergely I.B. Varga
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Dan Băcueț-Crișan
- Department of Archaeology, History and Art Museum Zalău, Zalău, Romania
| | - Timea Keresztes
- Department of Archaeology, History and Art Museum Zalău, Zalău, Romania
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Center, Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, Hungary
| | - Endre Neparáczki
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Center, Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Vyas DN, Koncz I, Modi A, Mende BG, Tian Y, Francalacci P, Lari M, Vai S, Straub P, Gallina Z, Szeniczey T, Hajdu T, Pejrani Baricco L, Giostra C, Radzevičiūtė R, Hofmanová Z, Évinger S, Bernert Z, Pohl W, Caramelli D, Vida T, Geary PJ, Veeramah KR. Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr Biol 2023; 33:3951-3961.e11. [PMID: 37633281 DOI: 10.1016/j.cub.2023.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
As the collapse of the Western Roman Empire accelerated during the 4th and 5th centuries, arriving "barbarian" groups began to establish new communities in the border provinces of the declining (and eventually former) empire. This was a time of significant cultural and political change throughout not only these border regions but Europe as a whole.1,2 To better understand post-Roman community formation in one of these key frontier zones after the collapse of the Hunnic movement, we generated new paleogenomic data for a set of 38 burials from a time series of three 5th century cemeteries3,4,5 at Lake Balaton, Hungary. We utilized a comprehensive sampling approach to characterize these cemeteries along with data from 38 additional burials from a previously published mid-6th century site6 and analyzed them alongside data from over 550 penecontemporaneous individuals.7,8,9,10,11,12,13,14,15,16,17,18,19 The range of genetic diversity in all four of these local burial communities is extensive and wider ranging than penecontemporaneous Europeans sequenced to date. Despite many commonalities in burial customs and demography, we find that there were substantial differences in genetic ancestry between the sites. We detect evidence of northern European gene flow into the Lake Balaton region. Additionally, we observe a statistically significant association between dress artifacts and genetic ancestry among 5th century genetically female burials. Our analysis shows that the formation of early Medieval communities was a multifarious process even at a local level, consisting of genetically heterogeneous groups.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Tóth Kálmán utca 4, 1097 Budapest, Hungary
| | - Yijie Tian
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | | | | | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Luisella Pejrani Baricco
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Torino, piazza San Giovanni 2, 10122 Torino, Italy
| | - Caterina Giostra
- Dipartimento di Storia, Archeologia e Storia dell'Arte, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milano, Italy
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Arna Nováka 1/1, Brno 60200, Czech Republic
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Walter Pohl
- Institute for Medieval Research, Austrian Academy of Sciences, Dr-Ignaz-Seipel-Platz 2, 1020 Vienna, Austria; Institute for Austrian Historical Research, University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy.
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary.
| | - Patrick J Geary
- School of Historical Studies, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Blöcher J, Brami M, Feinauer IS, Stolarczyk E, Diekmann Y, Vetterdietz L, Karapetian M, Winkelbach L, Kokot V, Vallini L, Stobbe A, Haak W, Papageorgopoulou C, Krause R, Sharapova S, Burger J. Descent, marriage, and residence practices of a 3,800-year-old pastoral community in Central Eurasia. Proc Natl Acad Sci U S A 2023; 120:e2303574120. [PMID: 37603728 PMCID: PMC10483636 DOI: 10.1073/pnas.2303574120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Our understanding of prehistoric societal organization at the family level is still limited. Here, we generated genome data from 32 individuals from an approximately 3,800-y-old burial mound attributed to the Bronze Age Srubnaya-Alakul cultural tradition at the site of Nepluyevsky, located in the Southern Ural region of Central Eurasia. We found that life expectancy was generally very low, with adult males living on average 8 y longer than females. A total of 35 first-degree, 40 second-degree, and 48 third-degree biological relationships connected 23 of the studied individuals, allowing us to propose a family tree spanning three generations with six brothers at its center. The oldest of these brothers had eight children with two women and the most children overall, whereas the other relationships were monogamous. Notably, related female children above the age of five were completely absent from the site, and adult females were more genetically diverse than males. These results suggest that biological relationships between male siblings played a structural role in society and that descent group membership was based on patrilineality. Women originated from a larger mating network and moved to join the men, with whom they were buried. Finally, the oldest brother likely held a higher social position, which was expressed in terms of fertility.
Collapse
Affiliation(s)
- Jens Blöcher
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | - Maxime Brami
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | - Isabelle Sofie Feinauer
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
- Centre for Palaeogenetics, Stockholm10691, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm10405, Sweden
- Department of Zoology, Stockholm University, Stockholm10691, Sweden
| | - Eliza Stolarczyk
- Institute of Archaeological Sciences, Johann Wolfgang Goethe University, Frankfurt am MainD-60629, Germany
| | - Yoan Diekmann
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | - Lisa Vetterdietz
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | - Marina Karapetian
- Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow125009, Russia
| | - Laura Winkelbach
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | - Vanessa Kokot
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| | | | - Astrid Stobbe
- Institute of Archaeological Sciences, Johann Wolfgang Goethe University, Frankfurt am MainD-60629, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Christina Papageorgopoulou
- Laboratory of Physical Anthropology, Department of History and Ethnology, Democritus University of Thrace, Komotini69100, Greece
| | - Rüdiger Krause
- Institute of Archaeological Sciences, Johann Wolfgang Goethe University, Frankfurt am MainD-60629, Germany
| | - Svetlana Sharapova
- Institute of History and Archaeology, Ural Branch of the Russian Academy of Science, Ekaterinburg620108, Russia
| | - Joachim Burger
- Institute of Organismic and Molecular Evolution, Palaeogenetics Group, Johannes Gutenberg University, Mainz55128, Germany
| |
Collapse
|
10
|
Pandey D, Harris M, Garud NR, Narasimhan VM. Understanding natural selection in Holocene Europe using multi-locus genotype identity scans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538113. [PMID: 37163039 PMCID: PMC10168228 DOI: 10.1101/2023.04.24.538113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ancient DNA (aDNA) has been a revolutionary technology in understanding human history but has not been used extensively to study natural selection as large sample sizes to study allele frequency changes over time have thus far not been available. Here, we examined a time transect of 708 published samples over the past 7,000 years of European history using multi-locus genotype-based selection scans. As aDNA data is affected by high missingness, ascertainment bias, DNA damage, random allele calling, and is unphased, we first validated our selection scan, G 12 a n c i e n t , on simulated data resembling aDNA under a demographic model that captures broad features of the allele frequency spectrum of European genomes as well as positive controls that have been previously identified and functionally validated in modern European datasets on data from ancient individuals from time periods very close to the present time. We then applied our statistic to the aDNA time transect to detect and resolve the timing of natural selection occurring genome wide and found several candidates of selection across the different time periods that had not been picked up by selection scans using single SNP allele frequency approaches. In addition, enrichment analysis discovered multiple categories of complex traits that might be under adaptation across these periods. Our results demonstrate the utility of applying different types of selection scans to aDNA to uncover putative selection signals at loci in the ancient past that might have been masked in modern samples.
Collapse
Affiliation(s)
- Devansh Pandey
- Department of Integrative Biology, The University of Texas at Austin
| | - Mariana Harris
- Department of Computational Medicine, University of California, Los Angeles
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin
- Department of Statistics and Data Science, The University of Texas at Austin
| |
Collapse
|
11
|
Gretzinger J, Sayer D, Justeau P, Altena E, Pala M, Dulias K, Edwards CJ, Jodoin S, Lacher L, Sabin S, Vågene ÅJ, Haak W, Ebenesersdóttir SS, Moore KHS, Radzeviciute R, Schmidt K, Brace S, Bager MA, Patterson N, Papac L, Broomandkhoshbacht N, Callan K, Harney É, Iliev L, Lawson AM, Michel M, Stewardson K, Zalzala F, Rohland N, Kappelhoff-Beckmann S, Both F, Winger D, Neumann D, Saalow L, Krabath S, Beckett S, Van Twest M, Faulkner N, Read C, Barton T, Caruth J, Hines J, Krause-Kyora B, Warnke U, Schuenemann VJ, Barnes I, Dahlström H, Clausen JJ, Richardson A, Popescu E, Dodwell N, Ladd S, Phillips T, Mortimer R, Sayer F, Swales D, Stewart A, Powlesland D, Kenyon R, Ladle L, Peek C, Grefen-Peters S, Ponce P, Daniels R, Spall C, Woolcock J, Jones AM, Roberts AV, Symmons R, Rawden AC, Cooper A, Bos KI, Booth T, Schroeder H, Thomas MG, Helgason A, Richards MB, Reich D, Krause J, Schiffels S. The Anglo-Saxon migration and the formation of the early English gene pool. Nature 2022; 610:112-119. [PMID: 36131019 PMCID: PMC9534755 DOI: 10.1038/s41586-022-05247-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | | - Maria Pala
- University of Huddersfield, Huddersfield, UK
| | - Katharina Dulias
- University of Huddersfield, Huddersfield, UK
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ceiridwen J Edwards
- University of Huddersfield, Huddersfield, UK
- University of Oxford, Oxford, UK
| | | | - Laura Lacher
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Susanna Sabin
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Åshild J Vågene
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wolfgang Haak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - S Sunna Ebenesersdóttir
- deCODE Genetics/AMGEN Inc., Reykjavík, Iceland
- Department of Anthropology, School of Social Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Rita Radzeviciute
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Martina Abenhus Bager
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nick Patterson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luka Papac
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Éadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Frank Both
- Landesmuseum Natur und Mensch, Oldenburg, Germany
| | | | | | - Lars Saalow
- Landesamt für Kultur und Denkmalpflege Mecklenburg-Vorpommern, Schwerin, Germany
| | - Stefan Krabath
- Institute for Historical Coastal Research (NIhK), Wilhelmshaven, Germany
| | - Sophie Beckett
- Sedgeford Historical and Archaeological Research Project, Sedgeford, UK
- Cranfield Forensic Institute, Cranfield Defence and Security, Cranfield University, Cranfield, UK
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Melanie Van Twest
- Sedgeford Historical and Archaeological Research Project, Sedgeford, UK
| | - Neil Faulkner
- Sedgeford Historical and Archaeological Research Project, Sedgeford, UK
| | - Chris Read
- The Atlantic Technological University, Sligo, Ireland
| | | | | | | | | | | | - Verena J Schuenemann
- University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | | | - Andrew Richardson
- Canterbury Archaeological Trust, Canterbury, UK
- Isle Heritage CIC, Sandgate, UK
| | | | | | | | | | - Richard Mortimer
- Oxford Archaeology East, Cambridge, UK
- Cotswold Archaeology, Needham Market, UK
| | - Faye Sayer
- University of Birmingham, Birmingham, UK
| | - Diana Swales
- Centre for Anatomy and Human Identification (CAHID), University of Dundee, Dundee, UK
| | | | | | - Robert Kenyon
- East Dorset Antiquarian Society (EDAS), West Bexington, UK
| | - Lilian Ladle
- Department of Archaeology and Anthropology, Bournemouth University, Poole, UK
| | - Christina Peek
- Institute for Historical Coastal Research (NIhK), Wilhelmshaven, Germany
| | | | | | | | | | | | | | | | | | - Anooshka C Rawden
- Fishbourne Roman Palace, Fishbourne, UK
- South Downs Centre, Midhurst, UK
| | - Alan Cooper
- BlueSkyGenetics, Adelaide, South Australia, Australia
| | - Kirsten I Bos
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Agnar Helgason
- deCODE Genetics/AMGEN Inc., Reykjavík, Iceland
- Department of Anthropology, School of Social Sciences, University of Iceland, Reykjavík, Iceland
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
12
|
Štular B, Lozić E, Belak M, Rihter J, Koch I, Modrijan Z, Magdič A, Karl S, Lehner M, Gutjahr C. Migration of Alpine Slavs and machine learning: Space-time pattern mining of an archaeological data set. PLoS One 2022; 17:e0274687. [PMID: 36121819 PMCID: PMC9484688 DOI: 10.1371/journal.pone.0274687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
The rapid expansion of the Slavic speakers in the second half of the first millennium CE remains a controversial topic in archaeology, and academic passions on the issue have long run high. Currently, there are three main hypotheses for this expansion. The aim of this paper was to test the so-called “hybrid hypothesis,” which states that the movement of people, cultural diffusion and language diffusion all occurred simultaneously. For this purpose, we examined an archaeological Deep Data set with a machine learning method termed time series clustering and with emerging hot spot analysis. The latter required two archaeology-specific modifications: The archaeological trend map and the multiscale emerging hot spot analysis. As a result, we were able to detect two migrations in the Eastern Alps between c. 500 and c. 700 CE. Based on the convergence of evidence from archaeology, linguistics, and population genetics, we have identified the migrants as Alpine Slavs, i.e., people who spoke Slavic and shared specific common ancestry.
Collapse
Affiliation(s)
- Benjamin Štular
- Znanstvenoraziskovalni Center Slovenske Akademije Znanosti in Umetnosti, Ljubljana, Slovenia
- * E-mail:
| | - Edisa Lozić
- Znanstvenoraziskovalni Center Slovenske Akademije Znanosti in Umetnosti, Ljubljana, Slovenia
- Institute of Classics, University of Graz, Graz, Austria
| | - Mateja Belak
- Znanstvenoraziskovalni Center Slovenske Akademije Znanosti in Umetnosti, Ljubljana, Slovenia
| | - Jernej Rihter
- Znanstvenoraziskovalni Center Slovenske Akademije Znanosti in Umetnosti, Ljubljana, Slovenia
| | - Iris Koch
- Institute of Classics, University of Graz, Graz, Austria
| | - Zvezdana Modrijan
- Znanstvenoraziskovalni Center Slovenske Akademije Znanosti in Umetnosti, Ljubljana, Slovenia
| | - Andrej Magdič
- Območna Enota Maribor, Javni Zavod Republike Slovenije za Varstvo Kulturne Dediščine, Maribor, Slovenia
| | - Stephan Karl
- Institute of Classics, University of Graz, Graz, Austria
| | - Manfred Lehner
- Institute of Classics, University of Graz, Graz, Austria
| | | |
Collapse
|
13
|
Massy K, Friedrich R, Mittnik A, Stockhammer PW. Pedigree-based Bayesian modelling of radiocarbon dates. PLoS One 2022; 17:e0270374. [PMID: 35771856 PMCID: PMC9246184 DOI: 10.1371/journal.pone.0270374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Within the last decade, archaeogenetic analysis has revolutionized archaeological research and enabled novel insights into mobility, relatedness and health of past societies. Now, it is possible to develop these results further and integrate archaeogenetic insights into biological relatedness with radiocarbon dates as means of chronologically sequenced information. In our article, we demonstrate the potential of combining relative chronological information with absolute radiocarbon dates by Bayesian interpretation in order to improve age determinations. Using artificial pedigrees with four sets of simulated radiocarbon dates we show that the combination of relationship information with radiocarbon dates improves the age determination in many cases at least between 20 to 50%. Calibrated age ranges are more constrained than simply calibrating radiocarbon ages independently from each other. Thereby, the precision of modelled ages depends on the precision of the single radiocarbon dates, the number of modelled generations, the shape of the calibration curve and the availability of samples that can be precisely fixed in time due to specific patterns in the calibration curve (“anchor points”). Ambiguous calibrated radiocarbon dates, which are caused by inversions of the calibration curve, can be partly or almost entirely resolved through Bayesian modelling based upon information from pedigrees. Finally, we discuss selected case studies of biological pedigrees achieved for Early Bronze Age Southern Germany by recent archaeogenetic analysis, whereby the sites and pedigrees differ with regard to the quality of information, which can be used for a Bayesian model of the radiocarbon dates. In accordance with the abstract models, radiocarbon dates can again be better constrained and are therefore more applicable for archaeological interpretation and chronological placement of the dated individuals.
Collapse
Affiliation(s)
- Ken Massy
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| | | | - Alissa Mittnik
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philipp W. Stockhammer
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Munich, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
14
|
Fischer CE, Pemonge MH, Ducoussau I, Arzelier A, Rivollat M, Santos F, Barrand Emam H, Bertaud A, Beylier A, Ciesielski E, Dedet B, Desenne S, Duday H, Chenal F, Gailledrat E, Goepfert S, Gorgé O, Gorgues A, Kuhnle G, Lambach F, Lefort A, Mauduit A, Maziere F, Oudry S, Paresys C, Pinard E, Plouin S, Richard I, Roth-Zehner M, Roure R, Thevenet C, Thomas Y, Rottier S, Deguilloux MF, Pruvost M. Origin and mobility of Iron Age Gaulish groups in present-day France revealed through archaeogenomics. iScience 2022; 25:104094. [PMID: 35402880 PMCID: PMC8983337 DOI: 10.1016/j.isci.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Iron Age period occupies an important place in French history because the Gauls are regularly presented as the direct ancestors of the extant French population. We documented here the genomic diversity of Iron Age communities originating from six French regions. The 49 acquired genomes permitted us to highlight an absence of discontinuity between Bronze Age and Iron Age groups in France, lending support to a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. Genomic analyses revealed strong genetic homogeneity among the regional groups associated with distinct archaeological cultures. This genomic homogenization appears to be linked to individuals' mobility between regions and gene flow with neighbouring groups from England and Spain. Thus, the results globally support a common genomic legacy for the Iron Age population of modern-day France that could be linked to recurrent gene flow between culturally differentiated communities.
Collapse
Affiliation(s)
- Claire-Elise Fischer
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
- Corresponding author
| | | | - Isaure Ducoussau
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | - Ana Arzelier
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | - Maïté Rivollat
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
- Department of Archaeogenetics, Max Planck Institue for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Frederic Santos
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | - Hélène Barrand Emam
- ANTEA-Archéologie, Habsheim, France
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
| | - Alexandre Bertaud
- UMR-5607 Ausonius, Université Bordeaux Montaigne, Maison de l’Archéologie, 8 Esplanade des Antilles, 33600 Pessac, France
| | - Alexandre Beylier
- Service Archéologie Sète Agglopôle Mediterranée, 34110 Frontignan, France
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
| | - Elsa Ciesielski
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
| | - Bernard Dedet
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
| | - Sophie Desenne
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR 8215 Trajectoires, CNRS, Université Paris 1 Pantheon Sorbonne, 92023 Nanterre, France
| | - Henri Duday
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | - Fanny Chenal
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
| | - Eric Gailledrat
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
| | - Sébastien Goepfert
- ANTEA-Archéologie, Habsheim, France
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
| | - Olivier Gorgé
- Institut de Recherche Biomédicale des Armées, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Alexis Gorgues
- UMR-5607 Ausonius, Université Bordeaux Montaigne, Maison de l’Archéologie, 8 Esplanade des Antilles, 33600 Pessac, France
| | - Gertrud Kuhnle
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart Referat 84.2, Operative Archäologie Dienstsitz Freiburg Günterstalstraße 67, 79100 Freiburg im Breisgau, Germany
| | - François Lambach
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | - Anthony Lefort
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
| | | | - Florent Maziere
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
| | - Sophie Oudry
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR-7268 ADES, CNRS, Université Aix-Marseille, EFS, 13015 Marseille, France
| | - Cécile Paresys
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR 7264 CEPAM, CNRS Université Nice Sophia Antipolis, 06357 Nice Cedex 4, France
| | - Estelle Pinard
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR 8215 Trajectoires, CNRS, Université Paris 1 Pantheon Sorbonne, 92023 Nanterre, France
| | - Suzanne Plouin
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
| | - Isabelle Richard
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR 7264 CEPAM, CNRS Université Nice Sophia Antipolis, 06357 Nice Cedex 4, France
| | - Muriel Roth-Zehner
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
- Archéologie Alsace, 11 Rue Champollion, 67600 Sélestat, France
| | - Réjane Roure
- UMR 5140 - ASM, Université Paul Valéry Montpellier 3, CNRS, Ministère de la Culture, Inrap, 34000 Montpellier, France
| | - Corinne Thevenet
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
- UMR 8215 Trajectoires, CNRS, Université Paris 1 Pantheon Sorbonne, 92023 Nanterre, France
| | - Yohann Thomas
- UMR7044 Archimède, CNRS Université de Strasbourg et Université de Haute-Alsace, Strasbourg et Mulhouse, France
- INRAP, Institut National de Recherche Archéologiques Préventives, 75685 Paris Cedex 14, France
| | - Stéphane Rottier
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
| | | | - Mélanie Pruvost
- UMR 5199 PACEA, CNRS, Université de Bordeaux, 33615 Pessac, France
- Corresponding author
| |
Collapse
|
15
|
Ning C, Zhang F, Cao Y, Qin L, Hudson MJ, Gao S, Ma P, Li W, Zhu S, Li C, Li T, Xu Y, Li C, Robbeets M, Zhang H, Cui Y. Ancient genome analyses shed light on kinship organization and mating practice of Late Neolithic society in China. iScience 2021; 24:103352. [PMID: 34805800 PMCID: PMC8590084 DOI: 10.1016/j.isci.2021.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Anthropology began in the late nineteenth century with an emphasis on kinship as a key factor in human evolution. From the 1960s, archaeologists attempted increasingly sophisticated ways of reconstructing prehistoric kinship but ancient DNA analysis has transformed the field, making it possible, to directly examine kin relations from human skeletal remains. Here, we retrieved genomic data from four Late Neolithic individuals in central China associated with the Late Neolithic Longshan culture. We provide direct evidence of consanguineous mating in ancient China, revealing inbreeding among the Longshan populations. By combining ancient genomic data with anthropological and archaeological evidence, we further show that Longshan society household was built based on the extended beyond the nuclear family, coinciding with intensified social complexity during the Longshan period, perhaps showing the transformation of large communities through a new role of genetic kinship-based extended family units.
Collapse
Affiliation(s)
- Chao Ning
- Research Center for Chinese Frontier Archaeology of Jilin University, Jilin University, Changchun 130012, China
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanpeng Cao
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Ling Qin
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Mark J Hudson
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Shizhu Gao
- College of Pharmacia Sciences, Jilin University, Changchun 130021, China
| | - Pengcheng Ma
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wei Li
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Shuzheng Zhu
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou 450000, China
| | - Chunxia Li
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Tianjiao Li
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yang Xu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Martine Robbeets
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Hai Zhang
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Yinqiu Cui
- Research Center for Chinese Frontier Archaeology of Jilin University, Jilin University, Changchun 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
16
|
Wurst C, Maixner F, Castella V, Cipollini G, Hotz G, Zink A. The Lady from Basel's Barfüsserkirche - Molecular confirmation of the Mummy's identity through mitochondrial DNA of living relatives spanning 22 generations. Forensic Sci Int Genet 2021; 56:102604. [PMID: 34656830 DOI: 10.1016/j.fsigen.2021.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
The identity of the mummified Lady from the Barfüsser Church in Basel, Switzerland has been unsolved for decades, despite the prominent location of the burial place in front of the choir screen. A recent multidisciplinary research approach came up with a possible candidate, Anna Catharina Bischoff who died in Basel in 1787 with an age of 69 years (1719-1787). To verify the identity of the mummy, genealogists of the Citizen Science Basel discovered three living individuals of the maternal lineage of two different family branches, separated from Anna Catharina Bischoff by up to 22 generations. In this study we compare the ancient mitochondrial DNA of the mummy recovered from a premolar to the mitochondrial DNA of these three candidates. Initially the mitochondrial hypervariable regions I and II of the living individuals were screened using the Sanger sequencing method. This was followed by a mitochondrial capture approach and next generation sequencing to enrich for the whole mitochondrial genome of the mummy and one living person. A full mitochondrial genome has been recovered of both individuals sharing an identical haplotype. The sequence was assigned to the mitochondrial haplogroup U5a1+!16192 including two private mutations 10006G and 16293C. Only by using an interdisciplinary approach combining ancient DNA analysis and genealogy a maternal lineage of a non-noble family spanning 22 generations could be confirmed.
Collapse
Affiliation(s)
- Christina Wurst
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy; Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, Saarstraße 21, 55122 Mainz, Germany.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| | - Vincent Castella
- Forensic Genetics Unit, University Center of Legal Medicine, Lausanne - Geneva, Lausanne University Hospital and University of Lausanne, Ch. de la Vulliette 4, 1000 Lausanne 25, Switzerland
| | - Giovanna Cipollini
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| | - Gerhard Hotz
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Drususallee/Viale Druso 1, 39100 Bozen, Bolzano, Italy
| |
Collapse
|
17
|
Žegarac A, Winkelbach L, Blöcher J, Diekmann Y, Krečković Gavrilović M, Porčić M, Stojković B, Milašinović L, Schreiber M, Wegmann D, Veeramah KR, Stefanović S, Burger J. Ancient genomes provide insights into family structure and the heredity of social status in the early Bronze Age of southeastern Europe. Sci Rep 2021; 11:10072. [PMID: 33980902 PMCID: PMC8115322 DOI: 10.1038/s41598-021-89090-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Twenty-four palaeogenomes from Mokrin, a major Early Bronze Age necropolis in southeastern Europe, were sequenced to analyse kinship between individuals and to better understand prehistoric social organization. 15 investigated individuals were involved in genetic relationships of varying degrees. The Mokrin sample resembles a genetically unstructured population, suggesting that the community’s social hierarchies were not accompanied by strict marriage barriers. We find evidence for female exogamy but no indications for strict patrilocality. Individual status differences at Mokrin, as indicated by grave goods, support the inference that females could inherit status, but could not transmit status to all their sons. We further show that sons had the possibility to acquire status during their lifetimes, but not necessarily to inherit it. Taken together, these findings suggest that Southeastern Europe in the Early Bronze Age had a significantly different family and social structure than Late Neolithic and Early Bronze Age societies of Central Europe.
Collapse
Affiliation(s)
- A Žegarac
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia.,Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - L Winkelbach
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - J Blöcher
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - Y Diekmann
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany
| | - M Krečković Gavrilović
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia
| | - M Porčić
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia
| | - B Stojković
- Department of Genetics and Evolution, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - L Milašinović
- National Museum of Kikinda, Trg Srpskih Dobrovoljaca 21, 23300, Kikinda, Serbia
| | - M Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - D Wegmann
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland
| | - K R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA
| | - S Stefanović
- Laboratory of Bioarchaeology, Faculty of Philosophy, University of Belgrade, 11000, Belgrade, Serbia.,Biosense Institute, University of Novi Sad, 21000, Novi Sad, Serbia
| | - J Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
18
|
Abstract
The study of ancient genomes has burgeoned at an incredible rate in the last decade. The result is a shift in archaeological narratives, bringing with it a fierce debate on the place of genetics in anthropological research. Archaeogenomics has challenged and scrutinized fundamental themes of anthropological research, including human origins, movement of ancient and modern populations, the role of social organization in shaping material culture, and the relationship between culture, language, and ancestry. Moreover, the discussion has inevitably invoked new debates on indigenous rights, ownership of ancient materials, inclusion in the scientific process, and even the meaning of what it is to be a human. We argue that the broad and seemingly daunting ethical, methodological, and theoretical challenges posed by archaeogenomics, in fact, represent the very cutting edge of social science research. Here, we provide a general review of the field by introducing the contemporary discussion points and summarizing methodological and ethical concerns, while highlighting the exciting possibilities of ancient genome studies in archaeology from an anthropological perspective.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14221, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
19
|
Olalde I, Posth C. Latest trends in archaeogenetic research of west Eurasians. Curr Opin Genet Dev 2020; 62:36-43. [PMID: 32610222 DOI: 10.1016/j.gde.2020.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
Abstract
During the past ten years, archaeogenetic research has exponentially grown to study the genetic history of human populations, using genome-wide data from large numbers of ancient individuals. Of the entire globe, Europe and the Near East are the regions where ancient DNA data is by far most abundant with over 2500 genomes published at present. In this review, we focus on archaeological contexts that have received less attention in the literature, specifically those associated with west Eurasian hunter-gatherers as well as populations from the Iron Age and later historical periods. In addition, we emphasize a recent shift from continent-wide to regional and even site-specific studies, which is starting to provide novel insights into sociocultural aspects of past societies.
Collapse
Affiliation(s)
- Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72070, Germany.
| |
Collapse
|
20
|
Vai S, Amorim CEG, Lari M, Caramelli D. Kinship Determination in Archeological Contexts Through DNA Analysis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Fleskes RE, Bruwelheide KS, West FL, Owsley DW, Griffith DR, Barca KG, Cabana GS, Schurr TG. Ancient DNA and bioarchaeological perspectives on European and African diversity and relationships on the colonial Delaware frontier. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:232-245. [PMID: 31270812 DOI: 10.1002/ajpa.23887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 07/13/2024]
Abstract
OBJECTIVES Ancient DNA (aDNA) and standard osteological analyses applied to 11 skeletons at a late 17th to early 18th century farmstead site in Delaware to investigate the biological and social factors of settlement and slavery in colonial America. MATERIALS AND METHODS Osteological analysis and mitochondrial DNA (mtDNA) sequencing were conducted for all individuals and the resulting data contextualized with archaeological and documentary evidence. RESULTS Individuals of European and African descent were spatially separated in this colonial cemetery. The skeletal remains exhibited differences in osteological features and maternal genetic ancestry. A specific mtDNA haplotype appeared in a subset of the European-descended individuals suggesting they were maternally related. Individuals of African descent were not maternally related, and instead showed a diversity of haplotypes affiliated with present-day Western, Central, and Eastern regions of Africa. DISCUSSION Along with the bioarchaeological and documentary evidence, the aDNA findings contribute to our understanding of life on the colonial Delaware frontier. Evidence of maternal relatedness among European-descended individuals at the site demonstrates kin-based settlements in 17th century Delaware and provides preliminary identifications of individuals. The maternal genetic diversity of the individuals with African descent aligns with the routes of the trans-Atlantic slave trade but broadens our understanding of the ancestries of persons involved in it. Burial positioning, osteological pathology, and lack of maternal kinship among individuals of African descent provide tangible evidence for the emergence of racialized labor and society in Delaware during the late 17th century.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karin S Bruwelheide
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, D.C
| | - Frankie L West
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Douglas W Owsley
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, D.C
| | | | - Kathryn G Barca
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, D.C
| | - Graciela S Cabana
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Abstract
We sequenced the genomes of 15 skeletons from a 5,000-y-old mass grave in Poland associated with the Globular Amphora culture. All individuals had been brutally killed by blows to the head, but buried with great care. Genome-wide analyses demonstrate that this was a large extended family and that the people who buried them knew them well: mothers are buried with their children, and siblings next to each other. From a population genetic viewpoint, the individuals are clearly distinct from neighboring Corded Ware groups because of their lack of steppe-related ancestry. Although the reason for the massacre is unknown, it is possible that it was connected with the expansion of Corded Ware groups, which may have resulted in violent conflict. The third millennium BCE was a period of major cultural and demographic changes in Europe that signaled the beginning of the Bronze Age. People from the Pontic steppe expanded westward, leading to the formation of the Corded Ware complex and transforming the genetic landscape of Europe. At the time, the Globular Amphora culture (3300–2700 BCE) existed over large parts of Central and Eastern Europe, but little is known about their interaction with neighboring Corded Ware groups and steppe societies. Here we present a detailed study of a Late Neolithic mass grave from southern Poland belonging to the Globular Amphora culture and containing the remains of 15 men, women, and children, all killed by blows to the head. We sequenced their genomes to between 1.1- and 3.9-fold coverage and performed kinship analyses that demonstrate that the individuals belonged to a large extended family. The bodies had been carefully laid out according to kin relationships by someone who evidently knew the deceased. From a population genetic viewpoint, the people from Koszyce are clearly distinct from neighboring Corded Ware groups because of their lack of steppe-related ancestry. Although the reason for the massacre is unknown, it is possible that it was connected with the expansion of Corded Ware groups, which may have resulted in competition for resources and violent conflict. Together with the archaeological evidence, these analyses provide an unprecedented level of insight into the kinship structure and social behavior of a Late Neolithic community.
Collapse
|
23
|
Goth migration induced changes in the matrilineal genetic structure of the central-east European population. Sci Rep 2019; 9:6737. [PMID: 31043639 PMCID: PMC6494872 DOI: 10.1038/s41598-019-43183-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 12/05/2022] Open
Abstract
For years, the issues related to the origin of the Goths and their early migrations in the Iron Age have been a matter of hot debate among archaeologists. Unfortunately, the lack of new independent data has precluded the evaluation of the existing hypothesis. To overcome this problem, we initiated systematic studies of the populations inhabiting the contemporary territory of Poland during the Iron Age. Here, we present an analysis of mitochondrial DNA isolated from 27 individuals (collectively called the Mas-VBIA group) excavated from an Iron Age cemetery (dated to the 2nd-4th century A.D.) attributed to Goths and located near Masłomęcz, eastern Poland. We found that Mas-VBIA has similar genetic diversity to present-day Asian populations and higher diversity than that of contemporary Europeans. Our studies revealed close genetic links between the Mas-VBIA and two other Iron Age populations from the Jutland peninsula and from Kowalewko, located in western Poland. We disclosed the genetic connection between the Mas-VBIA and ancient Pontic-Caspian steppe groups. Similar connections were absent in the chronologically earlier Kowalewko and Jutland peninsula populations. The collected results seem to be consistent with the historical narrative that assumed that the Goths originated in southern Scandinavia; then, at least part of the Goth population moved south through the territory of contemporary Poland towards the Black Sea region, where they mixed with local populations and formed the Chernyakhov culture. Finally, a fraction of the Chernyakhov population returned to the southeast region of present-day Poland and established the archaeological formation called the “Masłomęcz group”.
Collapse
|
24
|
Rutgers L, Ostrer H, Prowse T, Schroeder H. Diaspora, migration, and the sciences: a new integrated perspective. Eur J Hum Genet 2019; 27:509-510. [DOI: 10.1038/s41431-018-0314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
|