1
|
Lukovic M, Ciernik L, Müller G, Kluser D, Pham T, Burgert I, Schubert M. Probing the complexity of wood with computer vision: from pixels to properties. J R Soc Interface 2024; 21:20230492. [PMID: 38626806 PMCID: PMC11023017 DOI: 10.1098/rsif.2023.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
We use data produced by industrial wood grading machines to train a machine learning model for predicting strength-related properties of wood lamellae from colour images of their surfaces. The focus was on samples of Norway spruce (Picea abies) wood, which display visible fibre pattern formations on their surfaces. We used a pre-trained machine learning model based on the residual network ResNet50 that we trained with over 15 000 high-definition images labelled with the indicating properties measured by the grading machine. With the help of augmentation techniques, we were able to achieve a coefficient of determination (R2) value of just over 0.9. Considering the ever-increasing demand for construction-grade wood, we argue that computer vision should be considered a viable option for the automatic sorting and grading of wood lamellae in the future.
Collapse
Affiliation(s)
- Mirko Lukovic
- Laboratory for Cellulose & Wood Materials, WoodTec Group, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Laure Ciernik
- Department of Computer Science, ETH Zürich-Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | - Gauthier Müller
- Laboratory for Cellulose & Wood Materials, WoodTec Group, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Dan Kluser
- Department of Computer Science, ETH Zürich-Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | - Tuan Pham
- Department of Computer Science, ETH Zürich-Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
| | - Ingo Burgert
- Laboratory for Cellulose & Wood Materials, WoodTec Group, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Mark Schubert
- Laboratory for Cellulose & Wood Materials, WoodTec Group, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
2
|
Weisbord I, Segal-Peretz T. Revealing the 3D Structure of Block Copolymers with Electron Microscopy: Current Status and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58003-58022. [PMID: 37338172 DOI: 10.1021/acsami.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Block copolymers (BCPs) are considered model systems for understanding and utilizing self-assembly in soft matter. Their tunable nanometric structure and composition enable comprehensive studies of self-assembly processes as well as make them relevant materials in diverse applications. A key step in developing and controlling BCP nanostructures is a full understanding of their three-dimensional (3D) structure and how this structure is affected by the BCP chemistry, confinement, boundary conditions, and the self-assembly evolution and dynamics. Electron microscopy (EM) is a leading method in BCP 3D characterization owing to its high resolution in imaging nanosized structures. Here we discuss the two main 3D EM methods: namely, transmission EM tomography and slice and view scanning EM tomography. We present each method's principles, examine their strengths and weaknesses, and discuss ways researchers have devised to overcome some of the challenges in BCP 3D characterization with EM- from specimen preparation to imaging radiation-sensitive materials. Importantly, we review current and new cutting-edge EM methods such as direct electron detectors, energy dispersive X-ray spectroscopy of soft matter, high temporal rate imaging, and single-particle analysis that have great potential for expanding the BCP understanding through EM in the future.
Collapse
Affiliation(s)
- Inbal Weisbord
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Segal-Peretz
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Tu Y, Ren LF, Lin Y, Shao J, He Y. Restricted fiber contraction during amidoximation process for reinforced-concrete structured nanofiber sphere with superior Sb(V) adsorption capacity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127835. [PMID: 34839981 DOI: 10.1016/j.jhazmat.2021.127835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Amidoxime-polyacrylonitrile (APAN) nanofiber possesses advantages of adsorbing heavy metals for abundant amidoxime groups. However, it easily suffers from poor mechanical property caused by fiber contraction during amidoximation process. Inspired by high mechanical strength of reinforced concrete, we embedded stiff polylactic acid (PLA) skeletons into PAN matrix to prepare reinforced-concrete structured nanofiber sphere (APAN/PLA NFS) through solution blending. Preparation parameters including polymer concentration and PAN/PLA ratio were optimized as 4.0% and 1:1, and coarse sphere surface, numerous mesopores and large pore volume (19.3 mL/g) were endowed. Scanning electron microscope results showed restricted fiber contraction with nitrile conversion of 58.1%. APAN/PLA NFS showed robust compressive strength of 3.28 MPa with strain of 80%, and X-ray diffraction and differential scanning calorimeter analysis revealed that crystalline PLA reinforced non-crystalline PAN through molecule-level compatibility. Compared with plain APAN sphere, Sb(V) adsorption from water for APAN/PLA NFS showed better performance with superhigh capacity of 949.7 mg/g and fast rate (equilibrium time of 2 h), which was owing to abundant mesopores preserved by PLA skeletons. These findings indicated that PLA was a promising skeletal candidate which could protect APAN from fiber contraction during amidoximation process and could strongly expand adsorption capacity of APAN for heavy metals.
Collapse
Affiliation(s)
- Yonghui Tu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Yuanxin Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| |
Collapse
|
4
|
Affiliation(s)
- Clément Sanchez
- Chimie de la Matière Condensée de Paris, UMR 7574, Collège de France, CNRS, UMPC Université Paris 06, Sorbonne University, PSL Research University, France
| |
Collapse
|
5
|
Algarni F, Musteata VE, Falca G, Chisca S, Hadjichristidis N, Nunes SP. Thermo-Responsive Membranes from Blends of PVDF and PNIPAM- b-PVDF Block Copolymers with Linear and Star Architectures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fatimah Algarni
- Physical Science and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Valentina Elena Musteata
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Gheorghe Falca
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Stefan Chisca
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Science and Engineering Division, Catalysis Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
6
|
He W, Wu Z, Wu Y, Zhong Z, Hong Y. Construction of the Gypsum-Coated Scaffolds for In Situ Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31527-31541. [PMID: 34181398 DOI: 10.1021/acsami.1c08372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is significant to use functional biomaterials to rationally engineer microenvironments for in situ bone regeneration in the field of bone tissue engineering. To this end, we constructed the gypsum-coated β-tricalcium phosphate (G-TCP) scaffolds by combing a three-dimensional printing technique and an epitaxial gypsum growth method. In vitro simulation experiments showed that the as-prepared scaffolds could establish a dynamic and weakly acidic microenvironment in a simulated body liquid, in which the pH and the calcium ion concentration always changed due to the gypsum degradation and growth of bone-like apatite nanoplates on the scaffold surfaces. The cell experiments confirmed that the microenvironment established by the G-TCP surfaces promoted rapid osteogenic differentiation and proliferation of bone marrow mesenchymal stem cells (BM-MSCs). In vivo experiments confirmed that the G-TCP scaffolds had high bioactivity in modulating in situ regeneration of bone, and the bioactivity of the G-TCP scaffolds was endowed by correct pore structures, degradation of gypsum, and growth of a bone-like apatite layer. The microenvironment established by the gypsum degradation could stimulate tissue inflammation and recruit white blood cells and BM-MSCs and thus accelerating native healing cascades of the bone defects via a bone growth/remodeling-absorption cycle process. Furthermore, in vivo experiments demonstrated that after the bone defects had healed completely, the as-prepared scaffolds also degraded completely within 24 weeks.
Collapse
Affiliation(s)
- Wenchao He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yanmei Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhou Zhong
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youliang Hong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Zandi Shafagh R, Shen JX, Youhanna S, Guo W, Lauschke VM, van der Wijngaart W, Haraldsson T. Facile Nanoimprinting of Robust High-Aspect-Ratio Nanostructures for Human Cell Biomechanics. ACS APPLIED BIO MATERIALS 2020; 3:8757-8767. [PMID: 35019647 DOI: 10.1021/acsabm.0c01087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-aspect-ratio and hierarchically nanostructured surfaces are common in nature. Synthetic variants are of interest for their specific chemical, mechanic, electric, photonic, or biologic properties but are cumbersome in fabrication or suffer from structural collapse. Here, we replicated and directly biofunctionalized robust, large-area, and high-aspect-ratio nanostructures by nanoimprint lithography of an off-stoichiometric thiol-ene-epoxy polymer. We structured-in a single-step process-dense arrays of pillars with a diameter as low as 100 nm and an aspect ratio of 7.2; holes with a diameter of 70 nm and an aspect ratio of >20; and complex hierarchically layered structures, all with minimal collapse and defectivity. We show that the nanopillar arrays alter mechanosensing of human hepatic cells and provide precise spatial control of cell attachment. We speculate that our results can enable the widespread use of high-aspect-ratio nanotopograhy applications in mechanics, optics, and biomedicine.
Collapse
Affiliation(s)
- Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Weijin Guo
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Tommy Haraldsson
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Gao J, Lv C, An K, Gu X, Nie J, Li Y, Xu J, Du B. Observation of Double Gyroid and Hexagonally Perforated Lamellar Phases in ABCBA Pentablock Terpolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kun An
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoying Gu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Feng P, Peng S, Shuai C, Gao C, Yang W, Bin S, Min A. In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46743-46755. [PMID: 32940994 DOI: 10.1021/acsami.0c13768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyapatite (HAP) can endow a biopolymer scaffold with good bioactivity and osteoconductive ability, while the interfacial bonding is fairly weak between HAP and biopolymers. In this study, HAP was in situ generated on poly(l-lactic acid) (PLLA) particles, and then they were used to fabricate a scaffold by selective laser sintering. Detailedly, PLLA particles were first functionalized by dopamine oxide polymerization, which introduced abundance active catechol groups on the particle surface, and subsequently, the catechol groups concentrated Ca2+ ions by chelation in a simulated body fluid solution, and then, Ca2+ ions absorbed PO43- ions through electrostatic interactions for in situ nucleation of HAP. The results indicated that HAP was homogeneously generated on the PLLA particle surface, and HAP and PLLA exhibited good interfacial bonding in the HAP/PLLA scaffolds. Meanwhile, the scaffolds displayed excellent bioactivity by inducing apatite precipitation and provided a good environment for human bone mesenchymal stem cell attachment, proliferation, and osteogenic differentiation. More importantly, the ingrowth of blood vessel and the formation of new bone could be stimulated by the scaffolds in vivo, and the bone volume fraction and bone mineral density increased by 44.44 and 41.73% compared with the pure PLLA scaffolds, respectively. Serum biochemical indexes fell within the normal range, which indicated that there was no harmful effect on the normal functioning of the body after implanting the scaffold.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, School of basic Medical Science, Central South University, Changsha 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shizhen Bin
- Department of Oncology, Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
10
|
Naseem F, Lu P, Zeng J, Lu Z, Ng YH, Zhao H, Du Y, Yin Z. Solid Nanoporosity Governs Catalytic CO 2 and N 2 Reduction. ACS NANO 2020; 14:7734-7759. [PMID: 32539341 DOI: 10.1021/acsnano.0c02731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Global demand for green and clean energy is increasing day by day owing to ongoing developments by the human race that are changing the face of the earth at a rate faster than ever. Exploring alternative sources of energy to replace fossil fuel consumption has become even more vital to control the growing concentration of CO2, and reduction of CO2 into CO or other useful hydrocarbons (e.g., C1 and C≥2 products), as well as reduction of N2 into ammonia, can greatly help in this regard. Various materials have been developed for the reduction of CO2 and N2. The introduction of pores in these materials by porosity engineering has been demonstrated to be highly effective in increasing the efficiency of the involved redox reactions, over 40% increment for CO2 reduction to date, by providing an increased number of exposed facets, kinks, edges, and catalytically active sites of catalysts. By shaping the surface porous structure, the selectivity of the redox reaction can also be enhanced. In order to better understand this area benefiting rational design for future solutions, this review systematically summarizes and constructively discusses the porosity engineering in catalytic materials, including various synthesis methods, characterization of porous materials, and the effects of porosity on performance of CO2 reduction and N2 reduction.
Collapse
Affiliation(s)
- Fizza Naseem
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Peilong Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jianping Zeng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Ziyang Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Haitao Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300071, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Sato T, Mori S, Septiyanti M, Nakamura H, Hongo C, Matsumoto T, Nishino T. Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic lipolysis scaffolds. Carbohydr Res 2020; 493:108020. [PMID: 32407824 DOI: 10.1016/j.carres.2020.108020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Cellulose nanofiber (CNF) materials have received much attention as sustainable "green" materials with high mechanical properties. Their application in oil absorption and enzymatic lipolysis makes them further attractive from the perspective of environmental issues including marine pollution preservation. Herein, we prepared CNF cryogels with various surface properties, evaluated their capacities as oil absorbents and applied them as lipase-lipolysis scaffolds. Their obtained cryogels consisted of various modified CNFs and their structure and properties were investigated. Moreover, lipase-supported CNF cryogels were prepared for enzymatic lipolysis. The cryogels of protonated TEMPO-oxidized CNF showed the highest absorption capacity for olive oil, while all the CNF cryogels possessed similar absorption abilities towards water. In enzymatic lipolysis with lipase, the TEMPO-oxidized CNF (TOCN-Na+) cryogel showed the highest specific activity. The specific activities of lipase in TOCN-Na+ cryogels remained unchanged after being stored at 40 °C for 3 days.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Shunichi Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Melati Septiyanti
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Hiroyuki Nakamura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Chizuru Hongo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
12
|
Jin S, Wei X, Yu Z, Ren J, Meng Z, Jiang Z. Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22318-22326. [PMID: 32255607 DOI: 10.1021/acsami.0c02118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous materials have a variety of applications such as catalysis, gas separation, sensing, tissue engineering, sewage treatment, and so on. However, there are still challenges in the synthesis of porous materials with light weight, high porosity, and superhydrophobicity. Herein, we demonstrate one acoustic-controlled microbubble generation method, which is used to synthesize 3D polymer porous materials. The acoustic-controlled microbubble generation based on focused surface acoustic wave (FSAW) is suitable for not only the generation of gas-in-oil microbubbles but also the gas-in-water microbubbles. The size of microbubbles can be real-time controlled by adjusting the frequency or the driving voltage of the FSAW. The as-prepared poly(vinyl alcohol) (PVA) foams composed of microbubbles can be used as a template to fabricate the PVA-based porous gel materials through freezing-thawing cyclic processing, and the various sized bubbles result in different porosity of the PVA-based porous gel materials. Moreover, excellent properties like oleophilicity and superhydrophobicity of the PVA-based porous gel materials can be obtained through a further hydrophobic modification treatment. The oil/water separation experiments have been done to demonstrate the good absorption and reliability of the modified porous gel materials, which are capable of multiple uses.
Collapse
Affiliation(s)
- Shaobo Jin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Juan Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhijun Meng
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Liang Y, Ouyang W, Wang P, Zhang W, Wang S, Tian L, Ju Y, Li G. Block copolymer assisted topochemical polymerization: A facile and efficient route to robust polymeric nanoporous membranes decorated with versatile amino acids. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117761] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Li T, Zhai D, Ma B, Xue J, Zhao P, Chang J, Gelinsky M, Wu C. 3D Printing of Hot Dog-Like Biomaterials with Hierarchical Architecture and Distinct Bioactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901146. [PMID: 31592134 PMCID: PMC6774059 DOI: 10.1002/advs.201901146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/16/2019] [Indexed: 05/04/2023]
Abstract
Hierarchical structure has exhibited an important influence in the fields of supercapacitors, catalytic applications, and tissue engineering. The hot dog, a popular food, is composed of bread and sausage with special structures. In this study, inspired by the structure of a hot dog, the strategy of combining direct ink writing 3D printing with bidirectional freezing is devised to prepare hot dog-like scaffolds with hierarchical structure. The scaffolds are composed of hollow bioceramic tubes (mimicking the "bread" in hot dogs, pore size: ≈1 mm) embedded by bioceramic rods (mimicking the "sausage" in hot dogs, diameter: ≈500 µm) and the sausage-like bioceramic rods possess uniformly aligned lamellar micropores (lamellar pore size: ≈30 µm). By mimicking the functions of hierarchical structure of bone tissues for transporting and storing nutrients, the prepared hot dog-like scaffolds show excellent properties for loading and releasing drugs and proteins as well as for improving the delivery and differentiation of tissue cells. The in vivo study further demonstrates that both the hierarchical structure itself and the controlled drug delivery in hot dog-like scaffolds significantly contribute to the improved bone-forming bioactivity. This study suggests that the prepared hot dog-like scaffolds are a promising biomaterial for drug delivery, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
| | - Jianmin Xue
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of SciencesNo.1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesNo,19(A) Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
16
|
Alvarez J, Saudino G, Musteata V, Madhavan P, Genovese A, Behzad AR, Sougrat R, Boi C, Peinemann KV, Nunes SP. 3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods. Sci Rep 2019; 9:13987. [PMID: 31562349 PMCID: PMC6764970 DOI: 10.1038/s41598-019-50338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
Highly porous particles with internal triply periodic minimal surfaces were investigated for sorption of proteins. The visualization of the complex ordered morphology requires complementary advanced methods of electron microscopy for 3D imaging, instead of a simple 2D projection: transmission electron microscopy (TEM) tomography, slice-and-view focused ion beam (FIB) and serial block face (SBF) scanning electron microscopy (SEM). The capability of each method of 3D image reconstruction was demonstrated and their potential of application to other synthetic polymeric systems was discussed. TEM has high resolution for details even smaller than 1 nm, but the imaged volume is relatively restricted (2.5 μm)3. The samples are pre-sliced in an ultramicrotome. FIB and SBF are coupled to a SEM. The sample sectioning is done in situ, respectively by an ion beam or an ultramicrotome, SBF, a method so far mostly applied only to biological systems, was particularly highly informative to reproduce the ordered morphology of block copolymer particles with 32–54 nm nanopores and sampling volume (20 μm)3.
Collapse
Affiliation(s)
- Juan Alvarez
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Giovanni Saudino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia.,Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Valentina Musteata
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Poornima Madhavan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Alessandro Genovese
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Ali Reza Behzad
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Rachid Sougrat
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Cristiana Boi
- Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Klaus-Viktor Peinemann
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Sutisna B, Musteata V, Pulido B, Puspasari T, Smilgies DM, Hadjichristidis N, Nunes SP. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Aissou K, Mumtaz M, Demazy N, Pécastaings G, Fleury G, Hadziioannou G. Periodic Bicontinuous Structures Formed on the Top Surface of Asymmetric Triblock Terpolymer Thick Films. ACS Macro Lett 2019; 8:923-930. [PMID: 35619498 DOI: 10.1021/acsmacrolett.9b00403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The combination of the nonsolvent-induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment is used to produce asymmetric and hydrophobic thick films having different long-range ordered network nanostructures, which are inaccessible via currently available membrane fabrication methods. We show that the disordered phase generated by NIPS on the material top surface can be transformed into a highly ordered bicontinuous network nanostructure during the SVA process without disrupting the substructure morphology. For instance, by using a straightforward blending approach, either a triply periodic alternating diamond (DA) structure or a core-shell perforated lamellar (PL) phase was demonstrated on the skin layer of fully hydrophobic poly(1,1-dimethyl silacyclobutane)-block-polystyrene-block-poly(methyl methacrylate) (PDMSB-b-PS-b-PMMA) thick films. Such a material fabrication method, enabling the formation of a sponge-like substructure topped by a network phase having an excellent long-range order, provides an appealing strategy to facilitate the manufacture of next-generation membranes at large scale since these bicontinuous morphologies obviate the need of the nanochannel alignment.
Collapse
Affiliation(s)
- Karim Aissou
- Institut Européen des Membranes, Université de Montpellier - CNRS - ENSCM, 300 Avenue du Professeur Emile Jeanbrau, F-34090 Montpellier, France
| | - Muhammad Mumtaz
- Laboratoire de Chimie des Polymères Organiques, Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Nils Demazy
- Laboratoire de Chimie des Polymères Organiques, Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gilles Pécastaings
- Laboratoire de Chimie des Polymères Organiques, Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Georges Hadziioannou
- Laboratoire de Chimie des Polymères Organiques, Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|