1
|
Hu X, Yu L, Zhu Z, Bao F, Lin J, Tu C, Lin P. A self-cleaning micro-fluidic chip biospired by the filtering system of manta rays. LAB ON A CHIP 2024; 24:3064-3079. [PMID: 38757493 DOI: 10.1039/d4lc00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Size-based particle filtration has become indispensable in numerous biomedical and environmental applications. In this study, bioinspired by the filter-feeding mechanism (lobe filtration) of manta rays, we designed a U-shaped biomimetic gill rake filter that combined lobe filtration and Dean flow to filter monodisperse suspensions, bi-disperse suspensions and yeast cells. Compared with other equipment using the inertial focusing technology, our equipment can perform high-throughput (up to 8 mL min-1) and high-efficiency filtration of particles (maximum filtration efficiencies of 96.08% and 97.14% for 10 and 15 μm monodisperse suspensions at the optimum flow rate of 6 mL min-1). The complex velocity field of the micro-fluidic flow within the filter is numerically simulated, and in combination with experiments, a threshold for the flow rate is identified. When the inlet flow rate exceeds the threshold value, the efficiency of particle filtration is increased rapidly. Afterwards, by analysing the filtration mechanism, we develop three novel filtration processes. The equilibrium positions of the particles and yeast cells in the main channel are close to the outer wall at high flow rate, which diminishes the likelihood of particles and yeast cells entering the side channel. This configuration establishes a self-cleaning mechanism, ensuring prolonged and efficient operation of the filter with high-throughput processing. Furthermore, the influence of the filter lobe angle and channel width on the filtration efficiency and outlet flow rate ratio are explored, and an optimisation plan is prepared.
Collapse
Affiliation(s)
- Xiao Hu
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Longfei Yu
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Zuchao Zhu
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou, Zhejiang 310027, PR China.
| | - Jianzhong Lin
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessels and Pipelines, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chengxu Tu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou, Zhejiang 310027, PR China.
| | - Peifeng Lin
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
2
|
Witkop EM, Van Wassenbergh S, Heideman PD, Sanderson SL. Biomimetic models of fish gill rakers as lateral displacement arrays for particle separation. BIOINSPIRATION & BIOMIMETICS 2023; 18:056009. [PMID: 37487501 DOI: 10.1088/1748-3190/acea0e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.
Collapse
Affiliation(s)
- Erin M Witkop
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| | - Sam Van Wassenbergh
- Departement Biologie, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | - Paul D Heideman
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| | - S Laurie Sanderson
- Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America
| |
Collapse
|
3
|
Van Wassenbergh S, Sanderson SL. Hydrodynamic analysis of bioinspired vortical cross-step filtration by computational modelling. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230315. [PMID: 37181797 PMCID: PMC10170350 DOI: 10.1098/rsos.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
Research on the suspension-feeding apparatus of fishes has led recently to the identification of novel filtration mechanisms involving vortices. Structures inside fish mouths form a series of 'backward-facing steps' by protruding medially into the mouth cavity. In paddlefish and basking shark mouths, porous gill rakers lie inside 'slots' between the protruding branchial arches. Vortical flows inside the slots of physical models have been shown to be important for the filtration process, but the complex flow patterns have not been visualised fully. Here we resolve the three-dimensional hydrodynamics by computational fluid dynamics simulation of a simplified mouth cavity including realistic flow dynamics at the porous layer. We developed and validated a modelling protocol in ANSYS Fluent software that combines a porous media model and permeability direction vector mapping. We found that vortex shape and confinement to the medial side of the gill rakers result from flow resistance by the porous gill raker surfaces. Anteriorly directed vortical flow shears the porous layer in the centre of slots. Flow patterns also indicate that slot entrances should remain unblocked, except for the posterior-most slot. This new modelling approach will enable future design exploration of fish-inspired filters.
Collapse
Affiliation(s)
- S. Van Wassenbergh
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - S. L. Sanderson
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
4
|
Adelmann B, Schwiddessen T, Götzendorfer B, Hellmann R. Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8454. [PMID: 36499952 PMCID: PMC9735598 DOI: 10.3390/ma15238454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
We report on additively manufactured filter systems based on bionic manta ray structures and evaluate their filter performance. The filters are periodic lamella structures produced by selective laser sintering using PA12 polyamide powder. Two different lamella types are investigated, which are derived from two manta ray genera, namely, Mobula tarapacana and Manta birostris. The precipitator efficiency of sand particles in water is determined for both flow directions, which are referred to as the "wing" and "spoiler" arrangements. With a flat filter design, more than 90% of sand particles can be removed from the water. The variation of the lamella distance reveals that the filter effect is based on the different dynamic flow of particles and water rather than filtering by the hole size. The successful transformation of the primary flat filter design into a round filter structure is demonstrated with precipitator efficiencies above 95% and a ratio of filtered to unfiltered water of 1:1 being achieved, depending of the gap between the filter and the surrounding pipe. A shortening of the filter structure results in an unaltered precipitator efficiency but a lower ratio of filtered water. These results reveal the peculiar possibility to produce 3D round-shaped filters based on manta ray structures with additive manufacturing, achieving good precipitator efficiencies.
Collapse
|
5
|
Surapaneni VA, Schindler M, Ziege R, de Faria LC, Wölfer J, Bidan CM, Mollen FH, Amini S, Hanna S, Dean MN. Groovy and Gnarly: Surface Wrinkles as a Multifunctional Motif for Terrestrial and Marine Environments. Integr Comp Biol 2022; 62:icac079. [PMID: 35675323 PMCID: PMC9703940 DOI: 10.1093/icb/icac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
From large ventral pleats of humpback whales to nanoscale ridges on flower petals, wrinkled structures are omnipresent, multifunctional, and found at hugely diverse scales. Depending on the particulars of the biological system-its environment, morphology, and mechanical properties-wrinkles may control adhesion, friction, wetting, or drag; promote interfacial exchange; act as flow channels; or contribute to stretching, mechanical integrity, or structural color. Undulations on natural surfaces primarily arise from stress-induced instabilities of surface layers (e.g., buckling) during growth or aging. Variation in the material properties of surface layers and in the magnitude and orientation of intrinsic stresses during growth lead to a variety of wrinkling morphologies and patterns which, in turn, reflect the wide range of biophysical challenges wrinkled surfaces can solve. Therefore, investigating how surface wrinkles vary and are implemented across biological systems is key to understanding their structure-function relationships. In this work, we synthesize the literature in a metadata analysis of surface wrinkling in various terrestrial and marine organisms to review important morphological parameters and classify functional aspects of surface wrinkles in relation to the size and ecology of organisms. Building on our previous and current experimental studies, we explore case studies on nano/micro-scale wrinkles in biofilms, plant surfaces, and basking shark filter structures to compare developmental and structure-vs-function aspects of wrinkles with vastly different size scales and environmental demands. In doing this and by contrasting wrinkle development in soft and hard biological systems, we provide a template of structure-function relationships of biological surface wrinkles and an outlook for functionalized wrinkled biomimetic surfaces.
Collapse
Affiliation(s)
- Venkata A Surapaneni
- City University of Hong Kong, 31 To Yuen Street, Kowloon, Hong Kong
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenburg 14476, Germany
| | - Mike Schindler
- City University of Hong Kong, 31 To Yuen Street, Kowloon, Hong Kong
| | - Ricardo Ziege
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenburg 14476, Germany
| | | | - Jan Wölfer
- Humboldt University of Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Cécile M Bidan
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenburg 14476, Germany
| | - Frederik H Mollen
- Elasmobranch Research Belgium, Rehaegenstraat 4, 2820 Bonheiden, Belgium
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenburg 14476, Germany
| | - Sean Hanna
- University College London, 14 Upper Woburn Place, London WC1H 0NN, UK
| | - Mason N Dean
- City University of Hong Kong, 31 To Yuen Street, Kowloon, Hong Kong
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenburg 14476, Germany
| |
Collapse
|
6
|
Li H, Raza A, Yuan S, AlMarzooqi F, Fang NX, Zhang T. Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane. Sci Rep 2022; 12:8178. [PMID: 35581265 PMCID: PMC9114119 DOI: 10.1038/s41598-022-11738-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane-on-chip is of growing interest in a wide variety of high-throughput environmental and water research. Advances in membrane technology continuously provide novel materials and multi-functional structures. Yet, the incorporation of membrane into microfluidic devices remains challenging, thus limiting its versatile utilization. Herein, via micro-stereolithography 3D printing, we propose and fabricate a "fish gill" structure-integrated on-chip membrane device, which has the self-sealing attribute at structure-membrane interface without extra assembling. As a demonstration, metallic micromesh and polymeric membrane can also be easily embedded in 3D printed on-chip device to achieve anti-fouling and anti-clogging functionality for wastewater filtration. As evidenced from in-situ visualization of structure-fluid-foulant interactions during filtration process, the proposed approach successfully adopts the fish feeding mechanism, being able to "ricochet" foulant particles or droplets through hydrodynamic manipulation. When benchmarked with two common wastewater treatment scenarios, such as plastic micro-particles and emulsified oil droplets, our biomimetic filtration devices exhibit 2 ~ 3 times longer durability for high-flux filtration than devices with commercial membrane. This proposed 3D printing-on-membrane approach, elegantly bridging the fields of microfluidics and membrane science, is instrumental to many other applications in energy, sensing, analytical chemistry and biomedical engineering.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Aikifa Raza
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Shaojun Yuan
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Faisal AlMarzooqi
- Department of Chemical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - TieJun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Using Drones to Assess Volitional Swimming Kinematics of Manta Ray Behaviors in the Wild. DRONES 2022. [DOI: 10.3390/drones6050111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drones have become increasingly popular tools to study marine megafauna but are underutilized in batoid research. We used drones to collect video data of manta ray (Mobula cf. birostris) swimming and assessed behavior-specific kinematics in Kinovea, a semi-automated point-tracking software. We describe a ‘resting’ behavior of mantas making use of strong currents in man-made inlets in addition to known ‘traveling’ and ‘feeding’ behaviors. No significant differences were found between the swimming speed of traveling and feeding behaviors, although feeding mantas had a significantly higher wingbeat frequency than traveling mantas. Resting mantas swam at a significantly slower speed and wingbeat frequency, suggesting that they were continuously swimming with the minimum effort required to maintain position and buoyancy. Swimming speed and wingbeat frequency of traveling and feeding behaviors overlapped, which could point to other factors such as prey availability and a transitional behavior, influencing how manta rays swim. These baseline swimming kinematic data have valuable applications to other emerging technologies in manta ray research.
Collapse
|
8
|
Provini P, Brunet A, Filippo A, Van Wassenbergh S. In vivo intraoral waterflow quantification reveals hidden mechanisms of suction feeding in fish. eLife 2022; 11:73621. [PMID: 35192455 PMCID: PMC8906803 DOI: 10.7554/elife.73621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all fishes rely on flows of water to transport food to the back of their pharynx. While external flows that draw food into the mouth are well described, how intra-oral water flows manage to deposit food at the esophagus entrance remains unknown. In theory, the posteriorly moving water must, at some point, curve laterally and/or ventrally to exit through the gill slits. Such flows would eventually carry food away from the esophagus instead of toward it. This apparent paradox calls for a filtration mechanism to deviate food from the suction-feeding streamlines. To study this gap in our fundamental understanding of how fishes feed, we developed and applied a new technique to quantify three-dimensional patterns of intra-oral water flows in vivo. We combined stereoscopic high-speed x-ray videos to quantify skeletal motion (XROMM) with 3D x-ray particle tracking (XPT) of neutrally buoyant spheres of 1.4 mm in diameter. We show, for carp (Cyprinus carpio) and tilapia (Oreochromis niloticus), that water tracers displayed higher curvatures than food tracers, indicating an inertia-driven filtration. In addition, tilapia also exhibited a 'central jet' flow pattern, which aids in quickly carrying food to the pharyngeal jaw region. When the food was trapped at the branchial basket, it was resuspended and carried more centrally by periodical bidirectional waterflows, synchronized with head-bone motions. By providing a complete picture of the suction-feeding process and revealing fundamental differences in food transport mechanisms among species, this novel technique opens a new area of investigation to fully understand how most aquatic vertebrates feed.
Collapse
Affiliation(s)
- Pauline Provini
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | - Alexandre Brunet
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | - Andréa Filippo
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | | |
Collapse
|
9
|
Hamann L, Blanke A. Suspension feeders: diversity, principles of particle separation and biomimetic potential. J R Soc Interface 2022; 19:20210741. [PMID: 35078340 PMCID: PMC8790370 DOI: 10.1098/rsif.2021.0741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Suspension feeders (SFs) evolved a high diversity of mechanisms, sometimes with remarkably convergent morphologies, to retain plankton, detritus and man-made particles with particle sizes ranging from less than 1 µm to several centimetres. Based on an extensive literature review, also including the physical and technical principles of solid-liquid separation, we developed a set of 18 ecological and technical parameters to review 35 taxa of suspension-feeding Metazoa covering the diversity of morphological and functional principles. This includes passive SFs, such as gorgonians or crinoids that use the ambient flow to encounter particles, and sponges, bivalves or baleen whales, which actively create a feeding current. Separation media can be flat or funnel-shaped, built externally such as the filter houses in larvaceans, or internally, like the pleated gills in bivalves. Most SFs feed in the intermediate flow region of Reynolds number 1-50 and have cleaning mechanisms that allow for continuous feeding. Comparison of structure-function patterns in SFs to current filtration technologies highlights potential solutions to common technical design challenges, such as mucus nets which increase particle adhesion in ascidians, vanes which reduce pressure losses in whale sharks and changing mesh sizes in the flamingo beak which allow quick adaptation to particle sizes.
Collapse
Affiliation(s)
- Leandra Hamann
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
10
|
Espinosa-Gayosso A, Ghisalberti M, Shimeta J, Ivey GN. On predicting particle capture rates in aquatic ecosystems. PLoS One 2021; 16:e0261400. [PMID: 34937058 PMCID: PMC8694431 DOI: 10.1371/journal.pone.0261400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recent advances in understanding the capture of moving suspended particles in aquatic ecosystems have opened up new possibilities for predicting rates of suspension feeding, larval settlement, seagrass pollination and sediment removal. Drawing on results from both highly-resolved computational fluid dynamics (CFD) simulations and existing experimental data, we quantify the controlling influence of flow velocity, particle size and collector size on rates of contact between suspended particles and biological collectors over the parameter space characterising a diverse range of aquatic ecosystems. As distinct from assumptions in previous modeling studies, the functional relationships describing capture are highly variable. Contact rates can vary in opposing directions in response to changes in collector size, an organism’s size, the size of particles being intercepted (related to diet in the case of suspension feeders), and the flow strength. Contact rates shift from decreasing to increasing with collector diameter when particles become relatively large and there is vortex shedding in the collector wake. And in some ranges of the ecologically relevant parameter space, contact rates do not increase strongly with velocity or particle size. The understanding of these complex dependencies allows us to reformulate some hypotheses of selection pressure on the physiology and ecology of aquatic organisms. We discuss the benefits and limitations of CFD tools in predicting rates of particle capture in aquatic ecosystems. Finally, across the complete parameter space relevant to real aquatic ecosystems, all quantitative estimates of particle capture from our model are provided here.
Collapse
Affiliation(s)
- Alexis Espinosa-Gayosso
- School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, WA, Australia
| | - Marco Ghisalberti
- School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
- * E-mail:
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Gregory N. Ivey
- School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Snell‐Rood EC, Smirnoff D, Cantrell H, Chapman K, Kirscht E, Stretch E. Bioinspiration as a method of problem-based STEM education: A case study with a class structured around the COVID-19 crisis. Ecol Evol 2021; 11:16374-16386. [PMID: 34900221 PMCID: PMC8646331 DOI: 10.1002/ece3.8044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID-19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic-related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID-19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind-mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID-19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry-driven way.
Collapse
Affiliation(s)
- Emilie C. Snell‐Rood
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Dimitri Smirnoff
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
- Department of Curriculum and InstructionSaint PaulMinnesotaUSA
| | - Hunter Cantrell
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Kaila Chapman
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | - Elizabeth Kirscht
- Department of Ecology, Evolution and BehaviorUniversity of Minnesota‐Twin CitiesSaint PaulMinnesotaUSA
| | | |
Collapse
|
12
|
Clark AS, San-Miguel A. A bioinspired, passive microfluidic lobe filtration system. LAB ON A CHIP 2021; 21:3762-3774. [PMID: 34581374 PMCID: PMC8486309 DOI: 10.1039/d1lc00449b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Size-based microfluidic filtration systems can be affected by clogging, which prevents their use in high-throughput and continuous applications. To address these concerns, we have developed two microfluidic lobe filters bioinspired by the filtration mechanism of two species of manta ray. These chips enable filtration of particles around 10-30 μm with precise control and high throughput by using two arrays of equally spaced filter lobes. For each filter design, we investigated multiple inlet flow rates and particle sizes to identify successful operational parameters. Filtration efficiency increases with fluid flow rate, suggesting that particle inertial effects play a key role in lobe filter separation. Microparticle filtration efficiencies up to 99% were obtainable with inlet flow rates of 20 mL min-1. Each filter design successfully increased microparticle concentrations by a factor of two or greater at different inlet flow rates ranging from 6-16 mL min-1. At higher inlet flow rates, ANSYS Fluent simulations of each device revealed a complex velocity profile that contains three local maxima and two inflection points. Ultimately, we show that distances from the lobe array to the closest local maxima and inflection point of the velocity profile can be used to successfully estimate lobe filtration efficiency at each operational flow rate.
Collapse
Affiliation(s)
- Andrew S Clark
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Adriana San-Miguel
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Leigh SC, Summers AP, Hoffmann SL, German DP. Shark spiral intestines may operate as Tesla valves. Proc Biol Sci 2021; 288:20211359. [PMID: 34284626 DOI: 10.1098/rspb.2021.1359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Looking to nature for inspiration has led to many diverse technological advances. The spiral valve intestine of sharks has provided the opportunity to observe the efficiency of different valve systems. It is supposed that the spiral intestine present in sharks, skates and rays slows the transit rate of digesta through the gut and provides increased surface area for the absorption of nutrients. In this investigation, we use a novel technique-creating three-dimensional reconstructions from CT scans of spiral intestines-to describe the morphology of the spiral intestine of at least one species from 22 different shark families. We discuss the morphological data in an evolutionary, dietary and functional context. The evolutionary analyses suggest that the columnar morphology is the ancestral form of the spiral intestine. Dietary analyses reveal no correlation between diet type and spiral intestine morphology. Flow rate was slowed significantly more when the two funnel-shaped spiral intestines were subjected to flow in the posterior to anterior direction, indicating their success at producing unidirectional flow, similar to a Tesla valve. These data are available to generate additional three-dimensional morphometrics, create computational models of the intestine, as well as to further explore the function of the gastrointestinal tract of sharks in structural and physiological contexts.
Collapse
Affiliation(s)
- Samantha C Leigh
- Department of Biology, California State University Dominguez Hills, Carson, CA 90747, USA
| | - Adam P Summers
- Biology and School of Aquatic and Fisheries Sciences, University of Washington, Friday Harbor, WA 98250, USA
| | | | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92617, USA
| |
Collapse
|
14
|
Illing B, Severati A, Hochen J, Boyd P, Raison P, Mather R, Downie AT, Rummer JL, Kroon FJ, Humphrey C. Automated flow control of a multi-lane swimming chamber for small fishes indicates species-specific sensitivity to experimental protocols. CONSERVATION PHYSIOLOGY 2021; 9:coaa131. [PMID: 33659062 PMCID: PMC7905161 DOI: 10.1093/conphys/coaa131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 05/03/2023]
Abstract
In fishes, swimming performance is considered an important metric to measure fitness, dispersal and migratory abilities. The swimming performance of individual larval fishes is often integrated into models to make inferences on how environmental parameters affect population-level dynamics (e.g. connectivity). However, little information exists regarding how experimental protocols affect the swimming performance of marine fish larvae. In addition, the technical setups used to measure larval fish swimming performance often lack automation and accurate control of water quality parameters and flow velocity. In this study, we automated the control of multi-lane swimming chambers for small fishes by developing an open-source algorithm. This automation allowed us to execute repeatable flow scenarios and reduce operator interference and inaccuracies in flow velocity typically associated with manual control. Furthermore, we made structural modifications to a prior design to reduce the areas of lower flow velocity. We then validated the flow dynamics of the new chambers using computational fluid dynamics and particle-tracking software. The algorithm provided an accurate alignment between the set and measured flow velocities and we used it to test whether faster critical swimming speed (U crit) protocols (i.e. shorter time intervals and higher velocity increments) would increase U crit of early life stages of two tropical fish species [4-10-mm standard length (SL)]. The U crit of barramundi (Lates calcarifer) and cinnamon anemonefish (Amphiprion melanopus) increased linearly with fish length, but in cinnamon anemonefish, U crit started to decrease upon metamorphosis. Swimming protocols using longer time intervals (more than 2.5 times increase) negatively affected U crit in cinnamon anemonefish but not in barramundi. These species-specific differences in swimming performance highlight the importance of testing suitable U crit protocols prior to experimentation. The automated control of flow velocity will create more accurate and repeatable data on swimming performance of larval fishes. Integrating refined measurements into individual-based models will support future research on the effects of environmental change.
Collapse
Affiliation(s)
- Björn Illing
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Andrea Severati
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Justin Hochen
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paul Boyd
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paulin Raison
- École Polytechnique Fédérale de Lausanne, School of Engineering, Route Cantonale, 1015 Lausanne, Switzerland
| | - Rachel Mather
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Adam T Downie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Frederieke J Kroon
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
- Division of Research and Innovation, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Craig Humphrey
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
15
|
Jiang X, Shao Y, Li J, Wu M, Niu Y, Ruan X, Yan X, Li X, He G. Bioinspired Hybrid Micro/Nanostructure Composited Membrane with Intensified Mass Transfer and Antifouling for High Saline Water Membrane Distillation. ACS NANO 2020; 14:17376-17386. [PMID: 33196181 DOI: 10.1021/acsnano.0c07543] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) holds great promise for high-saline solution treatment, but it is typically impeded by the trade-off between the high mass transfer and antifouling properties of the membrane. Herein, a new MD utilized membrane with bioinspired micro/nanostructure (lotus leaf and fish gill) was constructed on commercial PP membrane, which can simultaneously enhance the permeation flux and antifouling in the hypersaline MD operation. On the basis of the classic nucleation theory and hydrodynamics simulation, the nanoscale structure can intensify the interfacial nanoscale turbulent flow and hinder the crystal deposition, which works like the fish gill. In addition, the optimized nanoscale feature size renders the membrane with the heterogeneous nucleation barrier very similar to the homogeneous system, which works like the lotus leaf and hinders the induced nucleation effectively. The microscale structure as the supporting platform of nanostructure can additionally enlarge the effective evaporative surface with superior hydrophobicity and then promote the permeation transfer through the membrane. The hybrid micro/nanostructures render the fabricated membrane with excellent high-permeation flux and significantly prolonged fouling induction time, which sheds light on a new approach for the development of ideal MD utilized membrane.
Collapse
Affiliation(s)
- Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Yushan Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Mengyuan Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xuehua Ruan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, P.R. China
| | - Xiaoming Yan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, P.R. China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, P.R. China
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, P.R. China
| |
Collapse
|
16
|
Zhu Y, Hu D, Yang G. Theoretical analysis of the hydrodynamic filtering system in the balaenid whales suspension feeding. BIOINSPIRATION & BIOMIMETICS 2020; 16:026006. [PMID: 33105121 DOI: 10.1088/1748-3190/abc493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Balaenid whales are giant filter feeders that feed on the dense aggregations of prey. Through their unique oral filters, they can effectively filter water out and leave prey in their mouths. In this study, a theoretical model is established to analyze the hydrodynamic filtering system in the balaenid whales suspension feeding. First, the appropriate velocity profiles in the anteroposterior and mediolateral directions are adopted to approximate the flow field in the anteroposterior channel along the tongue (APT channel). Then, a four-stage Runge-Kutta method is used to calculate the particle trajectories and predict the corresponding filter cake profile by solving the particle motion equations. Finally, the effects of three crucial parameters, i.e. the APT channel widthDT, the fringe layer permeabilityK, and the food particle diameterdp, are discussed. The results show that the particle trajectories consist of a series of backward-outward arcs and the food particles tend to accumulate in the posterior region of the oral cavity. The growing parabolic filter cake profiles are formed except for the case of extremely low permeability. A smallDTand largeKmake the tendency of particle posterior aggregation obviously. So squeezing the tongue and having larger fringe layer permeability are both conducive to the swallowing process. But the change indphas less influence on this tendency. The proposed theoretical analysis method is a fast and low-cost calculation method. The study on the balaenid whales' filter feeding biomechanics and hydrodynamics is helpful to guide the design of the high-efficiency bionic filters.
Collapse
Affiliation(s)
- Yawei Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipments, Ministry of Education, Hunan University, Changsha 410082, People's Republic of China
| | - Dean Hu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipments, Ministry of Education, Hunan University, Changsha 410082, People's Republic of China
| | - Gang Yang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
- Key Laboratory of Advanced Design and Simulation Techniques for Special Equipments, Ministry of Education, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
17
|
Cohen KE, George AE, Chapman DC, Chick JH, Hernandez LP. Developmental ecomorphology of the epibranchial organ of the silver carp, Hypophthalmichthys molitrix. JOURNAL OF FISH BIOLOGY 2020; 97:527-536. [PMID: 32447771 DOI: 10.1111/jfb.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Silver carp regularly consume and digest particles of food as small as 5 μm. This ability drives their efficient consumption of phytoplankton and because they feed low on the food chain they have an important place in aquaculture worldwide. In North America, where they are considered invasive, silver carp deplete food resources for native species and in so doing occupy increased niche space. Here, we determine the ontogenetic stage and size at which silver carp are morphologically capable of primarily feeding on particles <10 μm. Ecological studies on this species have shown that there is an ontogenetic shift in diet as predominantly zooplanktivorous juveniles later switch to eating much smaller phytoplankton. The occupation of this new trophic niche presents both a metabolic and a mechanical challenge to these fish, since it is unclear how they can efficiently feed on such small particles. We hypothesize that the epibranchial organ (EBO) in silver carp is essential in aggregating these small particles of food, allowing the species to consume mass quantities of tiny particles, thus mitigating metabolic constraints. In this study, we investigate early ontogeny of the EBO in silver carp to determine when this structure achieves the requisite morphology to become functional. We find that at around 80 mm standard length (SL) the EBOs are consistently filled with food, demonstrating that this accumulating organ has become functional. This size corresponds with previous ecological data documenting important shifts in the type of food consumed. While the basic bauplan of the EBO is established very early in ontogeny (by 15 mm SL), multiple waves of histological maturation of muscle, cartilage, gill rakers and epithelium ultimately form the functional structure.
Collapse
Affiliation(s)
- Karly E Cohen
- Department of Biological Sciences, Science and Engineering Hall, The George Washington University, Washington, District of Columbia, USA
- Biology Department, Life Sciences Building, University of Washington, Seattle, Washington, USA
| | - Amy E George
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Duane C Chapman
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - John H Chick
- National Great Rivers Research and Education Center, Alton, Illinois, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, Science and Engineering Hall, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Storm TJ, Nolan KE, Roberts EM, Sanderson SL. Oropharyngeal morphology related to filtration mechanisms in suspension-feeding American shad (Clupeidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:493-510. [PMID: 32342660 DOI: 10.1002/jez.2363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/06/2022]
Abstract
To assess potential filtration mechanisms, scanning electron microscopy was used in a comprehensive quantification and analysis of the morphology and surface ultrastructure for all five branchial arches in the ram suspension-feeding fish, American shad (Alosa sapidissima, Clupeidae). The orientation of the branchial arches and the location of mucus cells on the gill rakers were more consistent with mechanisms of crossflow filtration and cross-step filtration rather than conventional dead-end sieving. The long, thin gill rakers could lead to a large area for the exit of water from the oropharyngeal cavity during suspension feeding (high fluid exit ratio). The substantial elongation of gill rakers along the dorsal-ventral axis formed d-type ribs with a groove aspect ratio of 0.5 and a Reynolds number of approximately 500, consistent with the potential operation of cross-step filtration. Mucus cell abundance differed significantly along the length of the raker and the height of the raker. The mucus cell abundance data and the observed sloughing of denticles along the gill raker margins closest to the interior of the oropharyngeal cavity suggest that gill raker growth may occur primarily at the raker tips, the denticle bases, and the internal raker margins along the length of the raker. These findings will be applied in ongoing experiments with 3D-printed physical models of fish oral cavities in flow tanks, and in future ecological studies on the diet and nutrition of suspension-feeding fishes.
Collapse
Affiliation(s)
- Timothy James Storm
- Department of Biology, William & Mary, Williamsburg, Virginia.,Oral and Maxillofacial Surgery, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania
| | - Katherine Ericson Nolan
- Department of Biology, William & Mary, Williamsburg, Virginia.,University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio
| | - Erin Michele Roberts
- Department of Biology, William & Mary, Williamsburg, Virginia.,Fisheries, Animal, and Veterinary Science Department, University of Rhode Island, Kingston, Rhode Island
| | | |
Collapse
|
19
|
Buser TJ, Boyd OF, Cortés Á, Donatelli CM, Kolmann MA, Luparell JL, Pfeiffenberger JA, Sidlauskas BL, Summers AP. The Natural Historian's Guide to the CT Galaxy: Step-by-Step Instructions for Preparing and Analyzing Computed Tomographic (CT) Data Using Cross-Platform, Open Access Software. Integr Org Biol 2020; 2:obaa009. [PMID: 33791553 PMCID: PMC7671151 DOI: 10.1093/iob/obaa009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The decreasing cost of acquiring computed tomographic (CT) data has fueled a global effort to digitize the anatomy of museum specimens. This effort has produced a wealth of open access digital three-dimensional (3D) models of anatomy available to anyone with access to the Internet. The potential applications of these data are broad, ranging from 3D printing for purely educational purposes to the development of highly advanced biomechanical models of anatomical structures. However, while virtually anyone can access these digital data, relatively few have the training to easily derive a desirable product (e.g., a 3D visualization of an anatomical structure) from them. Here, we present a workflow based on free, open source, cross-platform software for processing CT data. We provide step-by-step instructions that start with acquiring CT data from a new reconstruction or an open access repository, and progress through visualizing, measuring, landmarking, and constructing digital 3D models of anatomical structures. We also include instructions for digital dissection, data reduction, and exporting data for use in downstream applications such as 3D printing. Finally, we provide Supplementary Videos and workflows that demonstrate how the workflow facilitates five specific applications: measuring functional traits associated with feeding, digitally isolating anatomical structures, isolating regions of interest using semi-automated segmentation, collecting data with simple visual tools, and reducing file size and converting file type of a 3D model.
Collapse
Affiliation(s)
- T J Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - O F Boyd
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Á Cortés
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, ON, USA
| | - M A Kolmann
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - J L Luparell
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | | | - B L Sidlauskas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - A P Summers
- Department of Biology and SAFS, University of Washington, Friday Harbor Laboratories, Friday Harbor, Washington, DC, USA
| |
Collapse
|
20
|
Shiffman DS, Ajemian MJ, Carrier JC, Daly-Engel TS, Davis MM, Dulvy NK, Grubbs RD, Hinojosa NA, Imhoff J, Kolmann MA, Nash CS, Paig-Tran EWM, Peele EE, Skubel RA, Wetherbee BM, Whitenack LB, Wyffels JT. Trends in Chondrichthyan Research: An Analysis of Three Decades of Conference Abstracts. COPEIA 2020. [DOI: 10.1643/ot-19-179r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D. S. Shiffman
- Earth to Ocean Research Group, Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - M. J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, Florida 33431
| | - J. C. Carrier
- Department of Biology, Albion College, Albion, Michigan 49224
| | - T. S. Daly-Engel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| | - M. M. Davis
- Maine Department of Marine Resources, P.O. Box 8, 194 McKown Point Road, West Boothbay Harbor, Maine 04575
| | - N. K. Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - R. D. Grubbs
- Florida State University, Coastal and Marine Laboratory, 3618 Highway 98, St. Teresa, Florida 32358
| | - N. A. Hinojosa
- Department of Biology and Marine Biology, UNCW Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| | - J. Imhoff
- Florida State University, Coastal and Marine Laboratory, 3618 Highway 98, St. Teresa, Florida 32358
| | - M. A. Kolmann
- Department of Biological Sciences, George Washington University, 2029 G St. NW, Washington, D.C. 20052
| | - C. S. Nash
- Department of Biology University of West Florida, 11000 University Pkwy., Pensacola, Florida
| | - E. W. M. Paig-Tran
- Department of Biological Science, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831
| | - E. E. Peele
- Department of Biology and Marine Biology, UNCW Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| | - R. A. Skubel
- Abess Center for Ecosystem Science and Policy, University of Miami, Miami, Florida 33146
| | - B. M. Wetherbee
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - L. B. Whitenack
- Departments of Biology and Geology, Allegheny College, Meadville, Pennsylvania 16335
| | - J. T. Wyffels
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711; and South-East Zoo Alliance for Reproduction & Conservation, 581705 White Oak Road, Yulee, Florida 32097
| |
Collapse
|
21
|
Zhu Y, Yang G, Zhuang C, Li C, Hu D. Oral cavity flow distribution and pressure drop in balaenid whales feeding: a theoretical analysis. BIOINSPIRATION & BIOMIMETICS 2020; 15:036004. [PMID: 31978919 DOI: 10.1088/1748-3190/ab6fb8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Balaenid whales, as continuous ram filter feeders, can efficiently separate prey from water by baleen. The feeding process of balaenid whales is extremely complex, in which the flow distribution and pressure drop in the oral cavity play a significant role. In this paper, a theoretical model coupled with oral cavity velocity and pressure in balaenid whales is established based on mass conservation, momentum conservation and pressure drop equations, considering both the inertial and the friction terms. A discrete method with section-by-section calculation is adopted to solve the theoretical model. The effects of four crucial parameters, i.e. the ratio of filtration area to inlet area (S), the Reynolds number of entrance (Re in ), the ratio of thickness to permeability of the porous media formed by the fringe layer (ϕ) and the width ratio of the anteroposterior canal within the mouth along the tongue (APT channel) to that along the lip (APL channel) (H) are discussed. The results show that, for a given case, the flow distribution and the pressure drop both show increasing trends with the flow direction. For different cases, when S is small, Re in is small and ϕ is large, a good flow pattern emerges with a smoother flow speed near the oropharynx, better drainage, better shunting and filtration, and higher energy efficiency. However, for smaller values of H, some energy efficiency is sacrificed to achieve additional average transverse flow in order to produce better shunting and filtration. The research in this paper provides a reference for the design of high-efficiency bionic filters.
Collapse
Affiliation(s)
- Yawei Zhu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China. Key Laboratory of Advanced Design and Simulation Techniques for Special Equipments, Ministry of Education, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Wang Z, Xu J, Wang P, Zhang Y, You J, Li C. Noncloggingly Sieving Sub-6 nm Nanoparticles of Noble Metals into Conductive Mesoporous Foams with Biological Nanofibrils. ACS NANO 2020; 14:828-834. [PMID: 31834768 DOI: 10.1021/acsnano.9b07923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Porous metal foams have been one of the most sought-after materials owing to their combination of bulk metallic characteristics (e.g., thermal/electrical conductivity and ductility) and nanometric size-effect properties (e.g., catalytic reactivity, plasmonic behavior, and high surface area). Traditional sol-gel approaches, though one of the most frequently used method to produce mesoporous metal foams, were hindered for scalable production and wide applications because of its tedious multistep procedure, time-consuming gelation time, and polydisperse pore sizes. Herein, by depositing biological nanofibrils (chitin, cellulose, and silk) on commercial filtration membranes, we report a facile approach to sieve and recycle sub-6 nm nanoparticles of noble metals (Au and Pt) via nonclogging filtration into three-dimensional (3D) networks with interconnected mesopores. The porous networks could withstand air-drying, in contrast to freezing/supercritical drying conventionally used for mesoporous foams preparation. This approach was also applicable to both mesoporous monometallic (Au, Pt) and bimetallic (Au-Pt) foams. Moreover, the resultant mesoporous metallic foams show high porosity up to 90%, homogeneous mesoporous structure, and metallic conductivity up to 104 S/cm. Thus, this rapid and scalable sieving procedure not only offers a possibility of sieving noncloggingly for efficient recovery of metal nanoparticles but also starts a pathway to produce conductive and flexible mesoporous foams applicable in broad fields such as continuous flow catalysis and smart actuating.
Collapse
Affiliation(s)
- Zengbin Wang
- CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China
- Institute of Material Science and Engineering , Ocean University of China , Qingdao , Shandong 266100 P.R. China
| | - Jie Xu
- CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China
| | - Penggang Wang
- CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China
| | - Yue Zhang
- Institute of Material Science and Engineering , Ocean University of China , Qingdao , Shandong 266100 P.R. China
| | - Jun You
- CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering , Hubei University , Wuhan 30062 , P.R. China
| | - Chaoxu Li
- CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P.R. China
| |
Collapse
|