1
|
Gutierrez JI, Tyler JK. A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability. NATURE AGING 2024; 4:1782-1793. [PMID: 39587368 DOI: 10.1038/s43587-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing. Instead, when nucleoli expand beyond a size threshold, their biophysical properties change, allowing entry of proteins normally excluded from the nucleolus, including the homologous recombinational repair protein Rad52. This triggers rDNA instability due to aberrant recombination, catastrophic genome instability and imminent death. These results establish that nucleolar expansion is sufficient to drive aging. Moreover, nucleolar expansion beyond a specific size threshold is a mortality timer, as the accompanying disruption of the nucleolar condensate boundary results in catastrophic genome instability that ends replicative lifespan.
Collapse
Affiliation(s)
- J Ignacio Gutierrez
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|
3
|
Small EM, Osley MA. A screen for histone mutations that affect quiescence in S. cerevisiae. FEBS J 2023; 290:3539-3562. [PMID: 36871139 DOI: 10.1111/febs.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Quiescence or G0 is a reversible state in which cells cease division but retain the ability to resume proliferation. Quiescence occurs in all organisms and is essential for stem cell maintenance and tissue renewal. It is also related to chronological lifespan (CLS)-the survival of postmitotic quiescent cells (Q cells) over time-and thus contributes to longevity. Important questions remain regarding the mechanisms that control entry into quiescence, maintenance of quiescence and re-entry of Q cells into the cell cycle. S. cerevisiae has emerged as an excellent organism in which to address these questions because of the ease in which Q cells can be isolated. Following entry into G0, yeast cells remain viable for an extended period and can re-enter the cell cycle when exposed to growth-promoting signals. Histone acetylation is lost during the formation of Q cells and chromatin becomes highly condensed. This unique chromatin landscape regulates quiescence-specific transcriptional repression and has been linked to the formation and maintenance of Q cells. To ask whether other chromatin features regulate quiescence, we conducted two comprehensive screens of histone H3 and H4 mutants and identified mutants that show either altered quiescence entry or CLS. Examination of several quiescence entry mutants found that none of the mutants retain histone acetylation in Q cells but show differences in chromatin condensation. A comparison of H3 and H4 mutants with altered CLS to those with altered quiescence entry found that chromatin plays both overlapping and independent roles in the continuum of the quiescence program.
Collapse
Affiliation(s)
- Eric M Small
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
4
|
Jing M, Qiong L, Wang Z, Xiong X, Fu Y, Yan W. Histone H3 activates caspase-1 and promotes proliferation and metastasis in hepatocellular carcinoma. Int J Med Sci 2023; 20:689-701. [PMID: 37082731 PMCID: PMC10110467 DOI: 10.7150/ijms.76580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/04/2023] [Indexed: 04/22/2023] Open
Abstract
Background: As a component of nucleosomes, histone H3 plays an important role in chromosome structure and gene expression. Current studies have mostly focused on the role of histones in epigenetics, but in addition to this, the role of histones themselves in tumor development and microenvironment have been less explored. Methods: Western blot and immunofluorescence were carried out to detect the content and localization of histone H3 in hepatocellular carcinoma. The changes of histone H3 were observed in hypoxia treatment cells, the specific action mechanism of histone H3 was studied by CoIP and other methods. Cell Counting Kit-8 assay, plate cloning assay and transwell assay were used to exam the effect of histone H3 on cell proliferation and metastasis, which were verified by subcutaneous tumors in mice and lung metastasis by tail vein injection in mice. Results: We found that histone H3 was overexpressed in hepatocellular carcinoma tumor tissues compared to adjacent non-tumor tissues, and there was concomitant translocation of histone H3 from the nucleus to the cytoplasm. We found that hypoxia could contribute to this phenomenon of histone H3 translocation from the nucleus to the cytoplasm in hepatocellular carcinoma cells and increased binding levels to TLR9. At the same time, hypoxia induced downstream activation of TLR9 and caspase-1, as well as cleavage and release of the pro-inflammatory cytokines IL-1β and IL-18. We further demonstrated that histone H3 could also promote proliferation and metastasis of hepatocellular carcinoma through TLR9 activation of NLRP3 inflammasome. In addition, overexpression of histone H3 was also confirmed to promote hepatocellular carcinoma proliferation and metastasis in mouse models of hepatocellular carcinoma growth assay and lung metastasis. Conclusions: In hypoxic hepatocellular carcinoma cells, histone H3 can translocate to the cytoplasm and activate caspase-1 via TLR9, thereby producing pro-inflammatory cytokines that promote tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Mengjia Jing
- Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lamu Qiong
- Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Xiong
- Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- ✉ Corresponding authors: Yu Fu, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China. . Wei Yan, Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| | - Wei Yan
- Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- ✉ Corresponding authors: Yu Fu, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China. . Wei Yan, Institute of Liver and Gastroenterology Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
5
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
6
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
7
|
Wang TH, Tseng WC, Leu YL, Chen CY, Lee WC, Chi YC, Cheng SF, Lai CY, Kuo CH, Yang SL, Yang SH, Shen JJ, Feng CH, Wu CC, Hwang TL, Wang CJ, Wang SH, Chen CC. The flavonoid corylin exhibits lifespan extension properties in mouse. Nat Commun 2022; 13:1238. [PMID: 35264584 PMCID: PMC8907184 DOI: 10.1038/s41467-022-28908-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
In the long history of traditional Chinese medicine, single herbs and complex formulas have been suggested to increase lifespan. However, the identification of single molecules responsible for lifespan extension has been challenging. Here, we collected a list of traditional Chinese medicines with potential longevity properties from pharmacopeias. By utilizing the mother enrichment program, we systematically screened these traditional Chinese medicines and identified a single herb, Psoralea corylifolia, that increases lifespan in Saccharomyces cerevisiae. Next, twenty-two pure compounds were isolated from Psoralea corylifolia. One of the compounds, corylin, was found to extend the replicative lifespan in yeast by targeting the Gtr1 protein. In human umbilical vein endothelial cells, RNA sequencing data showed that corylin ameliorates cellular senescence. We also examined an in vivo mammalian model, and found that corylin extends lifespan in mice fed a high-fat diet. Taken together, these findings suggest that corylin may promote longevity.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wei-Che Tseng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wen-Chih Lee
- Office of Research and Development, Tzu Chi University, Hualien, Taiwan
| | - Ying-Chih Chi
- Cryo-EM Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lai
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Hsin Kuo
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Ling Yang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jiann-Jong Shen
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hao Feng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Jen Wang
- Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Deshpande N, Jordan R, Henderson Pozzi M, Bryk M. Histone 3 lysine 4 monomethylation supports activation of transcription in S. cerevisiae during nutrient stress. Curr Genet 2022; 68:181-194. [PMID: 35041077 PMCID: PMC8976815 DOI: 10.1007/s00294-022-01226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Mono-methylation of the fourth lysine on the N-terminal tail of histone H3 was found to support the induction of RNA polymerase II transcription in S. cerevisiae during nutrient stress. In S. cerevisiae, the mono-, di- and tri-methylation of lysine 4 on histone H3 (H3K4) is catalyzed by the protein methyltransferase, Set1. The three distinct methyl marks on H3K4 act in discrete ways to regulate transcription. Nucleosomes enriched with tri-methylated H3K4 are usually associated with active transcription whereas di-methylated H3K4 is associated with gene repression. Mono-methylated H3K4 has been shown to repress gene expression in S. cerevisiae and is detected at enhancers and promoters in eukaryotes. S. cerevisiae set1Δ mutants unable to methylate H3K4 exhibit growth defects during histidine starvation. The growth defects are rescued by either a wild-type allele of SET1 or partial-function alleles of set1, including a mutant that predominantly generates H3K4me1 and not H3K4me3. Rescue of the growth defect is associated with induction of the HIS3 gene. Growth defects observed when set1Δ cultures were starved for isoleucine and valine were also rescued by wild-type SET1 or partial-function set1 alleles. The results show that H3K4me1, in the absence of H3K4me3, supports transcription of the HIS3 gene and expression of one or more of the genes required for biosynthesis of isoleucine and valine during nutrient stress. Set1-like methyltransferases are evolutionarily conserved, and research has linked their functions to developmental gene regulation and several cancers in higher eukaryotes. Identification of mechanisms of H3K4me1-mediated activation of transcription in budding yeast will provide insight into gene regulation in all eukaryotes.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Rachel Jordan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
- iBio, 8800 HSC Blvd, Bryan, TX, 77807, USA
| | - Michelle Henderson Pozzi
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
10
|
Peritore M, Reusswig KU, Bantele SCS, Straub T, Pfander B. Strand-specific ChIP-seq at DNA breaks distinguishes ssDNA versus dsDNA binding and refutes single-stranded nucleosomes. Mol Cell 2021; 81:1841-1853.e4. [PMID: 33651987 DOI: 10.1016/j.molcel.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-domain on damaged chromatin. The molecular organization of this ssDNA and the adjacent dsDNA domain is crucial during DSB signaling and repair. However, data regarding the presence of nucleosomes, the most basic chromatin components, in the ssDNA domain have been contradictory. Here, we use site-specific induction of DSBs and chromatin immunoprecipitation followed by strand-specific sequencing to analyze in vivo binding of key DSB repair and signaling proteins to either the ssDNA or dsDNA domain. In the case of nucleosomes, we show that recently proposed ssDNA nucleosomes are not a major, persistent species, but that nucleosome eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome and ssDNA-RPA domains during DSB repair.
Collapse
Affiliation(s)
- Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karl-Uwe Reusswig
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susanne C S Bantele
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tobias Straub
- Biomedizinisches Centrum, Core Facility Bioinformatics, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Boris Pfander
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
11
|
Yi SJ, Kim K. New Insights into the Role of Histone Changes in Aging. Int J Mol Sci 2020; 21:ijms21218241. [PMID: 33153221 PMCID: PMC7662996 DOI: 10.3390/ijms21218241] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.
Collapse
|
12
|
Yu R, McCauley B, Dang W. Loss of chromatin structural integrity is a source of stress during aging. Hum Genet 2020; 139:371-380. [PMID: 31900586 DOI: 10.1007/s00439-019-02100-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Dysfunction and dysregulation at multiple levels, from organismal to molecular, are associated with the biological process of aging. In a eukaryotic nucleus, multiple lines of evidence have shown that the fundamental structure of chromatin is affected by aging. Not only euchromatic and heterochromatic regions shift locations, global changes, such as reduced levels of histones, have been reported for certain aged cell types and tissues. The physiological effects caused by such broad chromatin changes are complex and the cell's responses to it can be profound and in turn influence the aging process. In this review, we summarize recent findings on the interplay between chromatin architecture and aging with an emphasis on the cellular response to chromatin stress and its antagonistic effects on aging.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA
| | - Brenna McCauley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, 77030, USA.
| |
Collapse
|
13
|
Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform. Methods Mol Biol 2020; 2144:1-6. [PMID: 32410020 DOI: 10.1007/978-1-0716-0592-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The replicative aging of the budding yeast, Saccharomyces cerevisiae, has been a useful model for dissecting the molecular mechanisms of the aging process. Traditionally, the replicative lifespan (RLS) is measured by manually dissecting mother cells from daughter cells, which is a very tedious process. Since 2012, several microfluidic systems have been developed to automate the dissection process, significantly accelerating RLS determination. Here, we describe a detailed protocol of RLS measurement using a ommercially available microfluidic system based on the HYAA chip design, which enables data collection of up to 8000 cells in a single experiment.
Collapse
|
14
|
Crane MM, Russell AE, Schafer BJ, Blue BW, Whalen R, Almazan J, Hong MG, Nguyen B, Goings JE, Chen KL, Kelly R, Kaeberlein M. DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging. eLife 2019; 8:e50778. [PMID: 31714209 PMCID: PMC6850777 DOI: 10.7554/elife.50778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
Genome instability is a hallmark of aging and contributes to age-related disorders such as cancer and Alzheimer's disease. The accumulation of DNA damage during aging has been linked to altered cell cycle dynamics and the failure of cell cycle checkpoints. Here, we use single cell imaging to study the consequences of increased genomic instability during aging in budding yeast and identify striking age-associated genome missegregation events. This breakdown in mitotic fidelity results from the age-related activation of the DNA damage checkpoint and the resulting degradation of histone proteins. Disrupting the ability of cells to degrade histones in response to DNA damage increases replicative lifespan and reduces genomic missegregations. We present several lines of evidence supporting a model of antagonistic pleiotropy in the DNA damage response where histone degradation, and limited histone transcription are beneficial to respond rapidly to damage but reduce lifespan and genomic stability in the long term.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Adam E Russell
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Brent J Schafer
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Ben W Blue
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Riley Whalen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Jared Almazan
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Mung Gi Hong
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Bao Nguyen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Joslyn E Goings
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Kenneth L Chen
- Department of PathologyUniversity of WashingtonSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Ryan Kelly
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of PathologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|