1
|
Guerin MN, Ellis TS, Ware MJ, Manning A, Coley AA, Amini A, Igboanugo AG, Rothrock AP, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan, Halicephalobus mephisto. Commun Biol 2024; 7:1214. [PMID: 39342021 PMCID: PMC11439043 DOI: 10.1038/s42003-024-06886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, we report a biological temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the complete mitochondrial genome sequence of this organism and show through dN/dS analysis evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively selected amino acid substitutions were located in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase completely shuts down at low temperatures (20 °C), leading to a 4.8-fold reduction in the transmembrane proton gradient (ΔΨm) compared to optimal temperature (37 °C). Direct measurement of oxygen consumption found a corresponding 4.6-fold drop at 20 °C compared to 37 °C. Correspondingly, the lifecycle of H. mephisto takes four times longer at low temperature than at higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success across varying environmental temperatures.
Collapse
Affiliation(s)
- Megan N Guerin
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - TreVaughn S Ellis
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Mark J Ware
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Alexandra Manning
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ariana A Coley
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ali Amini
- Mathematics and Statistics Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Adaeze G Igboanugo
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Amaya P Rothrock
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - George Chung
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - John R Bracht
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA.
| |
Collapse
|
2
|
McNeill J, Brandt N, Schwarzkopf EJ, Jimenez M, Heil CS. Temperature affects recombination rate plasticity and meiotic success between thermotolerant and cold tolerant yeast species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610152. [PMID: 39257736 PMCID: PMC11383653 DOI: 10.1101/2024.08.28.610152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Meiosis is required for the formation of gametes in all sexually reproducing species and the process is well conserved across the tree of life. However, meiosis is sensitive to a variety of external factors, which can impact chromosome pairing, recombination, and fertility. For example, the optimal temperature for successful meiosis varies between species of plants and animals. This suggests that meiosis is temperature sensitive, and that natural selection may act on variation in meiotic success as organisms adapt to different environmental conditions. To understand how temperature alters the successful completion of meiosis, we utilized two species of the budding yeast Saccharomyces with different temperature preferences: thermotolerant Saccharomyces cerevisiae and cold tolerant Saccharomyces uvarum. We surveyed three metrics of meiosis: sporulation efficiency, spore viability, and recombination rate in multiple strains of each species. As per our predictions, the proportion of cells that complete meiosis and form spores is temperature sensitive, with thermotolerant S. cerevisiae having a higher temperature threshold for successful meiosis than cold tolerant S. uvarum. We confirmed previous observations that S. cerevisiae recombination rate varies between strains and across genomic regions, and add new results that S. uvarum has higher recombination rates than S. cerevisiae. We find that temperature significantly influences recombination rate plasticity in S. cerevisiae and S. uvarum, in agreement with studies in animals and plants. Overall, these results suggest that meiotic thermal sensitivity is associated with organismal thermal tolerance, and may even result in temporal reproductive isolation as populations diverge in thermal profiles.
Collapse
Affiliation(s)
- Jessica McNeill
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | | - Mili Jimenez
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
3
|
Liu K, Du S, Yang J, Li J, Wang S, Zhang Z, Luo W, Chen C, Yang J, Han X. Engineered bacterial membrane vesicle as safe and efficient nano-heaters to reprogram tumor microenvironment for enhanced immunotherapy. J Control Release 2024; 374:127-139. [PMID: 39122216 DOI: 10.1016/j.jconrel.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) in solid tumors often impedes the efficacy of immunotherapy. Bacterial outer membrane vesicles (OMVs), as a promising cancer vaccine that can potently stimulate immune responses, have garnered interest as a potential platform for cancer therapy. However, the low yield of OMVs limits their utilization. To address this limitation, we developed a novel approach to synthesize OMV-like multifunctional synthetic bacterial vesicles (SBVs) by pretreating bacteria with ampicillin and lysing them through sonication. Compared to OMVs, the yield of SBVs increased by 40 times. Additionally, the unique synthesis process of SBVs allows for the encapsulation of bacterial intracellular contents, endowing SBVs with the capability of delivering catalase (CAT) for tumor hypoxia relief and activating the host cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway. To overcome the toxicity of lipopolysaccharide (LPS) on the SBVs surface, we decorated SBVs with a biocompatible polydopamine (PDA) shell, which allowed TME reprogramming using SBVs to be conducted without adverse side effects. Additionally, the photosensitizer indocyanine green (ICG) was loaded into the PDA shell to induce immunogenic cell death and further improve the efficacy of immunotherapy. In summary, the SBVs-based therapeutic platform SBV@PDA/ICG (SBV@P/I) can synergistically elicit safe and potent tumor-specific antitumor responses through combined immunotherapy and phototherapy.
Collapse
Affiliation(s)
- Kunguo Liu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juanjuan Li
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijie Wang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhibin Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Chao Chen
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjing Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Han
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Jiang SD, Wang L, Wang L, Sun J, Wang JJ, Wei DD. Mitochondrial coding genes mediate insecticide tolerance in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105763. [PMID: 38458663 DOI: 10.1016/j.pestbp.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 03/10/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.
Collapse
Affiliation(s)
- Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Wang Y, Wang S, Li S, Zhen W, Jia X, Jiang X. Hollow Cavity CaO 2 @Polydopamine Nanocomposites for pH-Responsive Ca 2+ -Enhanced Efficient Mild Hyperthermia in the NIR-II Region. Adv Healthc Mater 2024; 13:e2302634. [PMID: 37992213 DOI: 10.1002/adhm.202302634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Second near-infrared (NIR-II) mild photothermal therapy with higher tissue penetration depth and less damage to healthy tissues is emerging as an attractive antitumor modality, but its therapeutic efficiency is dramatically suppressed by the resistance of heat shock proteins (HSPs). As a widely explored photothermal agent, the application of polydopamine (PDA) in the NIR-II region is hampered by low photothermal conversion efficiency (PCE). Herein, its PCE in the NIR-II region is improved by developing novel hollow cavity CaO2 @PDA nanocomposites through chelation-induced diffusion of inner core Ca2+ to the shell PDA to facilitate multiple reflections of laser in the cavity. Upon pH-responsive degradation of CaO2 , its structure is transformed into a stacked "nano-mesh" with excellent light absorption and an enlarged effective irradiation area. Overloading of Ca2+ ions not only induces downregulation of HSPs but also enhances interference of light on membrane potential, which further aggravate mitochondrial dysfunction and reduce the thermotolerance of tumor cells, promoting efficient mild hyperthermia of PDA in the NIR-II region.
Collapse
Affiliation(s)
- Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, No. 94 Weijin Road, Nan Kai District, Tianjin, 300071, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, No. 94 Weijin Road, Nan Kai District, Tianjin, 300071, China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, No. 94 Weijin Road, Nan Kai District, Tianjin, 300071, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
7
|
Algothmi KM, Mahasneh ZMH, Abdelnour SA, Khalaf QAW, Noreldin AE, Barkat RA, Khalifa NE, Khafaga AF, Tellez-Isaias G, Alqhtani AH, Swelum AA, Abd El-Hack ME. Protective impacts of mitochondria enhancers against thermal stress in poultry. Poult Sci 2024; 103:103218. [PMID: 37980733 PMCID: PMC10692709 DOI: 10.1016/j.psj.2023.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
Heat stress (HS) is still the essential environmental agent influencing the poultry industry. Research on HS in poultry has progressively acquired growing interest because of increased attention to climate alteration. Poultry can survive at certain zone of environmental temperatures, so it could be considered homoeothermic. In poultry, the normal body temperature is essential to enhance the internal environment for growth, which is achieved by normal environmental temperature. Recently, many studies have revealed that HS could cause mitochondrial dysfunction in broilers by inducing redox dysfunction, increasing uncoupling protein, boosting lipid and protein oxidation, and oxidative stress. Moreover, HS diminished the energy suppliers supported by mitochondria activity. A novel strategy for combating the negative influences of HS via boosting the mitochondria function through enrichment of the diets with mitochondria enhancers was also described in this review. Finally, the current review highlights the mitochondria dysfunction induced by HS in broilers and attempts to boost mitochondria functionality by enriching mitochondria enhancers to broiler diets.
Collapse
Affiliation(s)
- Khloud M Algothmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Qahtan A W Khalaf
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Kitab University, Kirkuk 36001, Iraq
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | | | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
8
|
Kayhani K, Barreto FS. Disproportionate role of nuclear-encoded proteins in organismal and mitochondrial thermal performance in a copepod. J Exp Biol 2023; 226:jeb246085. [PMID: 37947077 DOI: 10.1242/jeb.246085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Determining the mechanisms by which organisms evolve thermal tolerance is crucial to predicting how populations may respond to changes in local temperature regimes. Although evidence of relationships between mitochondrial background and thermal adaptation have been found, the presence of both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded proteins warrants experiments aimed at parsing out the relative role of each genome in thermal adaptation. We investigated the relative role of mtDNA-encoded products in thermal tolerance between two divergent populations of Tigriopus californicus using first-generation (F1) hybrids that vary in maternally inherited mtDNA but are heterozygous for population-specific alleles across nuclear loci. We tested two measures of thermal tolerance, (1) survivorship to acute thermal stress and (2) thermal stability of mitochondrial performance in Complex I-fueled ATP synthesis, both across a range of increasing temperatures. We found that the southern population (San Diego, CA, USA) outperformed the northern population (Strawberry Hill, OR, USA) in survivorship, and that both reciprocal F1 hybrid crosses had intermediate survival. Mitochondria from the San Diego population displayed greater stability in ATP synthesis with increasing temperatures compared with those from Strawberry Hill. Interestingly, hybrids from both cross directions had synthesis profiles that were very similar to that of Strawberry Hill. Taken together, these results suggest that the relative role of the mtDNA in these phenotypes is negligible compared with that of elements encoded by nuclear DNA in this system.
Collapse
Affiliation(s)
- Kamron Kayhani
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Fay JC, Alonso-del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces Species' Heat Shock Response Is Indicative of Their Thermal Tolerance. Genome Biol Evol 2023; 15:evad207. [PMID: 37972247 PMCID: PMC10683043 DOI: 10.1093/gbe/evad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature, we measured changes in gene expression in response to a 12 °C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families, we sequenced, assembled, and annotated a complete S. uvarum genome. In response to heat, the cryophilic species showed a stronger stress response than the thermophilic species, and the hybrids showed a mixture of parental responses that depended on the time point. After an initial strong response indicative of high thermal stress, hybrids with a thermophilic parent resolved their heat shock response to become similar to their thermophilic parent. Within the hybrids, only a small number of temperature-responsive genes showed consistent differences between alleles from the thermophilic and cryophilic species. Our results show that divergence in the heat shock response is mainly a consequence of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat-induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Javier Alonso-del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| |
Collapse
|
10
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
11
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
12
|
Fay JC, Alonso-Del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces species' heat shock response is indicative of their thermal tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547718. [PMID: 37461527 PMCID: PMC10349932 DOI: 10.1101/2023.07.04.547718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both S. cerevisiae and S. paradoxus grow at temperatures well above the maximum growth temperature of S. kudriavzevii and S. uvarum, but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature we measured changes in gene expression in response to a 12°C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families we sequenced, assembled and annotated a complete S. uvarum genome. All the strains exhibited a stronger response to heat than cold treatment. In response to heat, the cryophilic species showed a stronger response than the thermophilic species. The hybrids showed a mixture of parental stress responses depending on the time point. After the initial response, hybrids with a thermophilic parent were more similar to S. cerevisiae and S. paradoxus, and the S. cerevisiae × S. paradoxus hybrid showed the weakest heat shock response. Within the hybrids a small subset of temperature responsive genes showed species specific responses but most were also hybrid specific. Our results show that divergence in the heat shock response is indicative of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Javier Alonso-Del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
- Present position: Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
| |
Collapse
|
13
|
Longan ER, Fay JC. Experimental evolution of Saccharomyces uvarum at high temperature yields elevation of maximal growth temperature and loss of the mitochondrial genome. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000831. [PMID: 37334198 PMCID: PMC10276265 DOI: 10.17912/micropub.biology.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
An organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy. Using a selection scheme inspired by Dallinger, we sought to increase the upper thermal limit of Saccharomyces uvarum . This species has a maximum growth temperature of 34-35°C, considerably lower than S. cerevisiae . After 136 passages on solid plates at progressively higher temperatures, we recovered a clone that can grow at 36°C, a gain of ~1.5°C. Additionally, the evolved clone lost its mitochondrial genome and cannot respire. In contrast, an induced rho 0 derivative of the ancestor shows a decrease in thermotolerance. Also, incubation of the ancestor at 34°C for 5 days increased the frequency of petite mutants drastically compared to 22°C, supporting the notion that mutation pressure rather than selection drove loss of mtDNA in the evolved clone. These results demonstrate that S. uvarum 's upper thermal limit can be elevated slightly via experimental evolution and corroborate past observations in S. cerevisiae that high temperature selection schemes can inadvertently lead to production of the potentially undesirable respiratory incompetent phenotype in yeasts.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
14
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Wen D, Li K, Deng R, Feng J, Zhang H. Defect-Rich Glassy IrTe 2 with Dual Enzyme-Mimic Activities for Sono-Photosynergistic-Enhanced Oncotherapy. J Am Chem Soc 2023; 145:3952-3960. [PMID: 36757875 DOI: 10.1021/jacs.2c09967] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The complexity, diversity, and heterogeneity of malignant tumors pose a formidable challenge for antitumor therapy. To achieve the goal of significantly enhancing the antitumor effect, nanomedicine-based synergistic therapy is one of the important strategies. Herein, we innovatively report a defect-rich glassy IrTe2 (G-IrTe2) with weak Ir-Te bond strength for synergistic sonodynamic therapy (SDT), chemodynamic therapy (CDT), and mild photothermal therapy (PTT). G-IrTe2 sonosensitizer under ultrasound (US) stimuli exhibits excellent reactive oxygen species (ROS) production performance. Besides, catalase (CAT)-like activity of G-IrTe2 can provide abundant oxygen to enhance the SDT effect. Then, the theoretical calculation verifies that US stimuli can easily make the irregular Ir-Te bond to be broken in amorphous IrTe2 and free electrons will be released to combine with the oxygen and further form singlet oxygen (1O2). Meanwhile, G-IrTe2 with peroxidase (POD)-like activity can also catalyze endogenous H2O2 to produce more ROS for chemodynamic therapy (CDT), which is conducive to better tumor ablation. Furthermore, the ROS produced by sono-/chemodynamic processes can cause mitochondrial dysfunction and further give rise to heat shock protein (HSP) downregulated expression, maximizing the efficiency of mild PTT. Therefore, such glassy IrTe2 with rich defect could be significantly involved in synergistic oncotherapy and then effectively achieve outstanding antitumor efficacy. This study provides a new research idea for expanding the application of inorganic glassy nanomaterials in promoting the therapeutic effect of tumors.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
16
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Lin C, Huang C, Shi Z, Ou M, Sun S, Yu M, Chen T, Yi Y, Ji X, Lv F, Wu M, Mei L. Biodegradable calcium sulfide-based nanomodulators for H 2S-boosted Ca 2+-involved synergistic cascade cancer therapy. Acta Pharm Sin B 2022; 12:4472-4485. [PMID: 36561996 PMCID: PMC9764068 DOI: 10.1016/j.apsb.2022.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.
Collapse
Affiliation(s)
- Chuchu Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Corresponding author. Tel./fax: +18665387360.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China,Corresponding author. Tel./fax: +18665387360.
| |
Collapse
|
18
|
Zhang K, Li J, Li G, Zhao Y, Dong Y, Zhang Y, Sun W, Wang J, Yao J, Ma Y, Wang H, Zhang Z, Wang T, Xie K, Wendel JF, Liu B, Gong L. Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus). Mol Biol Evol 2022; 39:msac228. [PMID: 36260528 PMCID: PMC9665066 DOI: 10.1093/molbev/msac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.
Collapse
Affiliation(s)
- Keren Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Junsheng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin 130033, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, Liaoning 110036, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
19
|
Xu K, Zhang YF, Guo DY, Qin L, Ashraf M, Ahmad N. Recent advances in yeast genome evolution with stress tolerance for green biological manufacturing. Biotechnol Bioeng 2022; 119:2689-2697. [PMID: 35841179 DOI: 10.1002/bit.28183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023]
Abstract
Green biological manufacturing is a revolutionary industrial model utilizing yeast as a significant microbial cell factory to produce biofuels and other biochemicals. However, biotransformation efficiency is often limited owing to several stress factors resulting from environmental changes or metabolic imbalance, leading to the slow growth of cells, compromised yield, and enhanced energy consumption. These factors make biological manufacturing competitively less economical. In this regard, minimizing the stress impact on microbial cell factories and strong robust performance have been an interesting area of interest in the last few decades. In this review, we focused on revealing the stress factors and their associated mechanisms for yeast in biological manufacturing. To improve yeast tolerance, rational and irrational strategies were introduced, and the molecular basis of genome evolution in yeast was also summarized. Furthermore, strategies of genome-directed evolution such as homology directed repair and nonhomologous end-joining, and the synthetic chromosome recombination and modification by LoxP-mediated evolution and their association with stress tolerance was highlighted. We hope that genome evolution provides new insights for solving the limitations of the natural phenotypes of microorganisms in industrial fermentation for the production of valuable compounds.
Collapse
Affiliation(s)
- Ke Xu
- Department of Life Science, Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Tangshan Normal University, Tangshan.,Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, PR China
| | - Yun-Feng Zhang
- Department of Life Science, Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Tangshan Normal University, Tangshan
| | - Dong-Yu Guo
- Department of Life Science, Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Tangshan Normal University, Tangshan
| | - Lei Qin
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, PR China
| | - Munaza Ashraf
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
20
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Qi P, Zhang J, Bao Z, Liao Y, Liu Z, Wang J. A Platelet-Mimicking Single-Atom Nanozyme for Mitochondrial Damage-Mediated Mild-Temperature Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19081-19090. [PMID: 35442630 DOI: 10.1021/acsami.1c22346] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single-atom nanozyme (SAzyme) systems have shown great potential in tumor therapy. A multifunctional SAzyme not only possesses high catalytic activity but also can be used as photothermal agents in photothermal therapy (PTT). Furthermore, it is also imperative to overcome tumor thermal resistance in SAzyme-based PTT so that PTT under a mild temperature is achievable. Herein, a novel platelet membrane (PM)-coated mesoporous Fe single-atom nanozyme (Fe-SAzyme) was formulated to solve these issues. The PM-coated mesoporous Fe-SAzyme (PMS) showed a satisfactory NIR-II photothermal performance, high peroxidase (POD) activity, and good tumor-targeting ability. In addition, PMS may be used as a carrier for protein drugs owing to its inner mesoporous structure. In vitro experiments showed that PMS could inhibit the expression of heat shock protein (HSP) by damaging the mitochondria, thereby finally improving the effect of mild-temperature PTT. Moreover, in vivo results showed that PMS could efficiently accumulate in tumor sites and suppress tumor growth with minimal toxicity in major organs. To the best of our knowledge, this study is the first report of a biomimetic mesoporous Fe-SAzyme used to achieve mitochondrial damage-mediated mild-temperature PTT. The study provides new promising ideas for designing other SAzyme systems for cancer treatment.
Collapse
Affiliation(s)
- Pengyuan Qi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Junyu Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanping Liao
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zeming Liu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Abrams MB, Chuong JN, AlZaben F, Dubin CA, Skerker JM, Brem RB. Barcoded reciprocal hemizygosity analysis via sequencing illuminates the complex genetic basis of yeast thermotolerance. G3 GENES|GENOMES|GENETICS 2022; 12:6456302. [PMID: 34878132 PMCID: PMC9210320 DOI: 10.1093/g3journal/jkab412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Decades of successes in statistical genetics have revealed the molecular underpinnings of traits as they vary across individuals of a given species. But standard methods in the field cannot be applied to divergences between reproductively isolated taxa. Genome-wide reciprocal hemizygosity mapping (RH-seq), a mutagenesis screen in an interspecies hybrid background, holds promise as a method to accelerate the progress of interspecies genetics research. Here, we describe an improvement to RH-seq in which mutants harbor barcodes for cheap and straightforward sequencing after selection in a condition of interest. As a proof of concept for the new tool, we carried out genetic dissection of the difference in thermotolerance between two reproductively isolated budding yeast species. Experimental screening identified dozens of candidate loci at which variation between the species contributed to the thermotolerance trait. Hits were enriched for mitosis genes and other housekeeping factors, and among them were multiple loci with robust sequence signatures of positive selection. Together, these results shed new light on the mechanisms by which evolution solved the problems of cell survival and division at high temperature in the yeast clade, and they illustrate the power of the barcoded RH-seq approach.
Collapse
Affiliation(s)
- Melanie B Abrams
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Julie N Chuong
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
- PhD Program in Biology, New York University , New York, NY 10003, USA
| | - Faisal AlZaben
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Claire A Dubin
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
| | - Jeffrey M Skerker
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory , Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley , Berkeley, CA 94720, USA
- Buck Institute for Research on Aging , Novato, CA 94945, USA
| |
Collapse
|
23
|
Hénault M, Marsit S, Charron G, Landry CR. Hybridization drives mitochondrial DNA degeneration and metabolic shift in a species with biparental mitochondrial inheritance. Genome Res 2022; 32:2043-2056. [PMID: 36351770 PMCID: PMC9808621 DOI: 10.1101/gr.276885.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial DNA (mtDNA) is a cytoplasmic genome that is essential for respiratory metabolism. Although uniparental mtDNA inheritance is most common in animals and plants, distinct mtDNA haplotypes can coexist in a state of heteroplasmy, either because of paternal leakage or de novo mutations. mtDNA integrity and the resolution of heteroplasmy have important implications, notably for mitochondrial genetic disorders, speciation, and genome evolution in hybrids. However, the impact of genetic variation on the transition to homoplasmy from initially heteroplasmic backgrounds remains largely unknown. Here, we use Saccharomyces yeasts, fungi with constitutive biparental mtDNA inheritance, to investigate the resolution of mtDNA heteroplasmy in a variety of hybrid genotypes. We previously designed 11 crosses along a gradient of parental evolutionary divergence using undomesticated isolates of Saccharomyces paradoxus and Saccharomyces cerevisiae Each cross was independently replicated 48 to 96 times, and the resulting 864 hybrids were evolved under relaxed selection for mitochondrial function. Genome sequencing of 446 MA lines revealed extensive mtDNA recombination, but the recombination rate was not predicted by parental divergence level. We found a strong positive relationship between parental divergence and the rate of large-scale mtDNA deletions, which led to the loss of respiratory metabolism. We also uncovered associations between mtDNA recombination, mtDNA deletion, and genome instability that were genotype specific. Our results show that hybridization in yeast induces mtDNA degeneration through large-scale deletion and loss of function, with deep consequences for mtDNA evolution, metabolism, and the emergence of reproductive isolation.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christian R. Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
24
|
Bendixsen DP, Peris D, Stelkens R. Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:742894. [PMID: 37744091 PMCID: PMC10512264 DOI: 10.3389/ffunb.2021.742894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 09/26/2023]
Abstract
The genomes of hybrids often show substantial deviations from the features of the parent genomes, including genomic instabilities characterized by chromosomal rearrangements, gains, and losses. This plastic genomic architecture generates phenotypic diversity, potentially giving hybrids access to new ecological niches. It is however unclear if there are any generalizable patterns and predictability in the type and prevalence of genomic variation and instability across hybrids with different genetic and ecological backgrounds. Here, we analyzed the genomic architecture of 204 interspecific Saccharomyces yeast hybrids isolated from natural, industrial fermentation, clinical, and laboratory environments. Synchronous mapping to all eight putative parental species showed significant variation in read depth indicating frequent aneuploidy, affecting 44% of all hybrid genomes and particularly smaller chromosomes. Early generation hybrids with largely equal genomic content from both parent species were more likely to contain aneuploidies than introgressed genomes with an older hybridization history, which presumably stabilized the genome. Shared k-mer analysis showed that the degree of genomic diversity and variability varied among hybrids with different parent species. Interestingly, more genetically distant crosses produced more similar hybrid genomes, which may be a result of stronger negative epistasis at larger genomic divergence, putting constraints on hybridization outcomes. Mitochondrial genomes were typically inherited from the species also contributing the majority nuclear genome, but there were clear exceptions to this rule. Together, we find reliable genomic predictors of instability in hybrids, but also report interesting cross- and environment-specific idiosyncrasies. Our results are an important step in understanding the factors shaping divergent hybrid genomes and their role in adaptive evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University, Valencia, Spain
| | - Rike Stelkens
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Wang L, Qin W, Xu W, Huang F, Xie X, Wang F, Ma L, Zhang C. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102932. [PMID: 34472212 DOI: 10.1002/smll.202102932] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
By leveraging the ability of bacteria to express therapeutic protein cytolysin A (ClyA) through plasmid transformation, a thermally-activated biohybrid (TAB@Au) is constructed by biomineralizing gold nanoparticles (AuNPs) on the E. coli surface. Due to the feature of anaerobic bacteria homing to tumor microenvironments, the bacteria-based antitumor vehicles can be efficaciously accumulated at tumor sites. Under NIR laser irradiation, the biomineralized AuNPs harvest transdermal photons and convert them into local heat for photothermal therapy. After that, the produced heat elicits the expression of ClyA for killing tumor cells. In vitro and in vivo experiments verify the conception that the current therapeutic modality greatly inhibits the proliferation of tumor cells. In terms of the spatial specificity and non-invasiveness of NIR laser, the bacteria-based phototherapy represents an appealing way for tumor therapy.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Wenjun Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wenxuan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Fan Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
26
|
Timouma S, Balarezo-Cisneros LN, Pinto J, De La Cerda R, Bond U, Schwartz JM, Delneri D. Transcriptional profile of the industrial hybrid Saccharomyces pastorianus reveals temperature-dependent allele expression bias and preferential orthologous protein assemblies. Mol Biol Evol 2021; 38:5437-5452. [PMID: 34550394 PMCID: PMC8662600 DOI: 10.1093/molbev/msab282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces pastorianus is a natural yeast evolved from different hybridization events between the mesophilic S. cerevisiae and the cold-tolerant S. eubayanus. This complex aneuploid hybrid carries multiple copies of the parental alleles alongside specific hybrid genes and encodes for multiple protein isoforms which impart novel phenotypes, such as the strong ability to ferment at low temperature. These characteristics lead to agonistic competition for substrates and a plethora of biochemical activities, resulting in a unique cellular metabolism. Here, we investigated the transcriptional signature of the different orthologous alleles in S. pastorianus during temperature shifts. We identified temperature-dependent media-independent genes and showed that 35% has their regulation dependent on extracellular leucine uptake, suggesting an interplay between leucine metabolism and temperature response. The analysis of the expression of ortholog parental alleles unveiled that the majority of the genes expresses preferentially one parental allele over the other and that S. eubayanus-like alleles are significantly over-represented among the genes involved in the cold acclimatization. The presence of functionally redundant parental alleles may impact on the nature of protein complexes established in the hybrid, where both parental alleles are competing. Our expression data indicate that the majority of the protein complexes investigated in the hybrid are likely to be either exclusively chimeric or unispecific and that the redundancy is discouraged, a scenario that fits well with the gene balance hypothesis. This study offers the first overview of the transcriptional pattern of S. pastorianus and provides a rationalization for its unique industrial traits at the expression level.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Javier Pinto
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Roberto De La Cerda
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proc Natl Acad Sci U S A 2021; 118:2101242118. [PMID: 34518218 PMCID: PMC8463882 DOI: 10.1073/pnas.2101242118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear-mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type-dependent and -independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.
Collapse
|
28
|
AlZaben F, Chuong JN, Abrams MB, Brem RB. Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genet 2021; 17:e1009793. [PMID: 34520469 PMCID: PMC8462698 DOI: 10.1371/journal.pgen.1009793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/24/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
A central goal of evolutionary genetics is to understand, at the molecular level, how organisms adapt to their environments. For a given trait, the answer often involves the acquisition of variants at unlinked sites across the genome. Genomic methods have achieved landmark successes in pinpointing these adaptive loci. To figure out how a suite of adaptive alleles work together, and to what extent they can reconstitute the phenotype of interest, requires their transfer into an exogenous background. We studied the joint effect of adaptive, gain-of-function thermotolerance alleles at eight unlinked genes from Saccharomyces cerevisiae, when introduced into a thermosensitive sister species, S. paradoxus. Although the loci damped each other’s beneficial impact (that is, they were subject to negative epistasis), most boosted high-temperature growth alone and in combination, and none was deleterious. The complete set of eight genes was sufficient to confer ~15% of the S. cerevisiae thermotolerance phenotype in the S. paradoxus background. The same loci also contributed to a heretofore unknown advantage in cold growth by S. paradoxus. Together, our data establish temperature resistance in yeasts as a model case of a genetically complex evolutionary tradeoff, which can be partly reconstituted from the sequential assembly of unlinked underlying loci. Organisms adapt to threats in the environment by acquiring DNA sequence variants that tweak traits to improve fitness. Experimental studies of this process have proven to be a particular challenge when they involve manipulation of a suite of genes, all on different chromosomes. We set out to understand how so many loci could work together to confer a trait. We used as a model system eight genes that govern the ability of the unicellular yeast Saccharomyces cerevisiae to grow at high temperature. We introduced these variant loci stepwise into a non-thermotolerant sister species, and found that the more S. cerevisiae alleles we added, the better the phenotype. We saw no evidence for toxic interactions between the genes as they were combined. We also used the eight-fold transgenic to dissect the biological mechanism of thermotolerance. And we discovered a tradeoff: the same alleles that boosted growth at high temperature eroded the organism’s ability to deal with cold conditions. These results serve as a case study of modular construction of a trait from nature, by assembling the genes together in one genome.
Collapse
Affiliation(s)
- Faisal AlZaben
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Julie N. Chuong
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Melanie B. Abrams
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
30
|
de Melo Teixeira M, Lang BF, Matute DR, Stajich JE, Barker BM. Mitochondrial genomes of the human pathogens Coccidioides immitis and Coccidioides posadasii. G3 (BETHESDA, MD.) 2021; 11:jkab132. [PMID: 33871031 PMCID: PMC8496281 DOI: 10.1093/g3journal/jkab132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Fungal mitochondrial genomes encode genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and the molecule has been used as a molecular marker for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, approximately 150 Coccidioides isolates have been sequenced to infer patterns of variation in nuclear genomes. However, less attention has been given to the mitochondrial genomes of Coccidioides. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 selected genomes. The sizes of the circular-mapping molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identify 14 mitochondrial protein-coding genes common to most fungal mitochondria, which are largely syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparisons of mitochondrial and nuclear genomes show extensive phylogenetic discordance suggesting that the evolution of the two types of genetic material is not identical. This work represents the first assessment of mitochondrial genomes among isolates of both species of Coccidioides, and provides a foundation for future functional work.
Collapse
Affiliation(s)
- Marcus de Melo Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
- Faculty of Medicine, University of Brasília-DF, Brasília, Federal District 70910-3300, Brazil
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Génomiques, Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason E Stajich
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
31
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
32
|
Bágeľová Poláková S, Lichtner Ž, Szemes T, Smolejová M, Sulo P. Mitochondrial DNA duplication, recombination, and introgression during interspecific hybridization. Sci Rep 2021; 11:12726. [PMID: 34135414 PMCID: PMC8209160 DOI: 10.1038/s41598-021-92125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
mtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.
Collapse
Affiliation(s)
- Silvia Bágeľová Poláková
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia ,grid.419303.c0000 0001 2180 9405Present Address: Department of Membrane Biochemistry, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, 84005 Slovakia
| | - Žaneta Lichtner
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Tomáš Szemes
- grid.7634.60000000109409708Comenius University Science Park, Bratislava, 841 04 Slovakia ,grid.7634.60000000109409708Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, 842 15 Slovakia ,Geneton s.r.o., Galvaniho 7, Bratislava, 821 04 Slovakia
| | - Martina Smolejová
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Pavol Sulo
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| |
Collapse
|
33
|
Smukowski Heil C, Patterson K, Hickey ASM, Alcantara E, Dunham MJ. Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biol Evol 2021; 13:6141023. [PMID: 33595639 PMCID: PMC7952228 DOI: 10.1093/gbe/evab033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Barbara McClintock first hypothesized that interspecific hybridization could provide a “genomic shock” that leads to the mobilization of transposable elements (TEs). This hypothesis is based on the idea that regulation of TE movement is potentially disrupted in hybrids. However, the handful of studies testing this hypothesis have yielded mixed results. Here, we set out to identify if hybridization can increase transposition rate and facilitate colonization of TEs in Saccharomyces cerevisiae × Saccharomyces uvarum interspecific yeast hybrids. Saccharomyces cerevisiae have a small number of active long terminal repeat retrotransposons (Ty elements), whereas their distant relative S. uvarum have lost the Ty elements active in S. cerevisiae. Although the regulation system of Ty elements is known in S. cerevisiae, it is unclear how Ty elements are regulated in other Saccharomyces species, and what mechanisms contributed to the loss of most classes of Ty elements in S. uvarum. Therefore, we first assessed whether TEs could insert in the S. uvarum sub-genome of a S. cerevisiae × S. uvarum hybrid. We induced transposition to occur in these hybrids and developed a sequencing technique to show that Ty elements insert readily and nonrandomly in the S. uvarum genome. We then used an in vivo reporter construct to directly measure transposition rate in hybrids, demonstrating that hybridization itself does not alter rate of mobilization. However, we surprisingly show that species-specific mitochondrial inheritance can change transposition rate by an order of magnitude. Overall, our results provide evidence that hybridization can potentially facilitate the introduction of TEs across species boundaries and alter transposition via mitochondrial transmission, but that this does not lead to unrestrained proliferation of TEs suggested by the genomic shock theory.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kira Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Erica Alcantara
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Mead HL, Hamm PS, Shaffer IN, Teixeira MDM, Wendel CS, Wiederhold NP, Thompson GR, Muñiz-Salazar R, Castañón-Olivares LR, Keim P, Plude C, Terriquez J, Galgiani JN, Orbach MJ, Barker BM. Differential Thermotolerance Adaptation between Species of Coccidioides. J Fungi (Basel) 2020; 6:E366. [PMID: 33327629 PMCID: PMC7765126 DOI: 10.3390/jof6040366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis, or Valley fever, is caused by two species of dimorphic fungi. Based on molecular phylogenetic evidence, the genus Coccidioides contains two reciprocally monophyletic species: C. immitis and C. posadasii. However, phenotypic variation between species has not been deeply investigated. We therefore explored differences in growth rate under various conditions. A collection of 39 C. posadasii and 46 C. immitis isolates, representing the full geographical range of the two species, was screened for mycelial growth rate at 37 °C and 28 °C on solid media. The radial growth rate was measured for 16 days on yeast extract agar. A linear mixed effect model was used to compare the growth rate of C. posadasii and C. immitis at 37 °C and 28 °C, respectively. C. posadasii grew significantly faster at 37 °C, when compared to C. immitis; whereas both species had similar growth rates at 28 °C. These results indicate thermotolerance differs between these two species. As the ecological niche has not been well-described for Coccidioides spp., and disease variability between species has not been shown, the evolutionary pressure underlying the adaptation is unclear. However, this research reveals the first significant phenotypic difference between the two species that directly applies to ecological research.
Collapse
Affiliation(s)
- Heather L. Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Paris S. Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Isaac N. Shaffer
- School of Informatics, Computers, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | | | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 77030, USA;
| | - George R. Thompson
- Departments of Internal Medicine Division of Infectious Diseases, and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA 95616, USA;
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología Molecular, Escuela Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle Dorado, Ensenada 22890, Mexico;
| | - Laura Rosio Castañón-Olivares
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico;
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Carmel Plude
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| | - Marc J. Orbach
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| |
Collapse
|
35
|
Lauritano C, Roncalli V, Ambrosino L, Cieslak MC, Ianora A. First De Novo Transcriptome of the Copepod Rhincalanus gigas from Antarctic Waters. BIOLOGY 2020; 9:biology9110410. [PMID: 33266516 PMCID: PMC7700397 DOI: 10.3390/biology9110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Simple Summary Compared to more accessible sites, organisms inhabiting Antarctic waters have been poorly investigated. This study provides the first molecular resource (transcriptome from whole individual) for the eucalanoid copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. Sequence analyses identified possible adaptation strategies adopted by the organism to cope with cold environments. Among those, we identified in R. gigas transcriptome three predicted genes encoding for antifreeze proteins and gene duplication within the glutathione metabolism pathway. This new molecular resource, provided here, will be useful to study the physiology, ecology, and biology of R. gigas and it increases the information available for polar environments. Abstract Antarctic waters are the largest almost untapped diversified resource of our planet. Molecular resources for Antarctic organisms are very limited and mostly represented by sequences used for species genotyping. In this study, we present the first transcriptome for the copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. This transcriptome represents also the first molecular resource for an eucalanoid copepod. The transcriptome is of high quality and completeness. The presence of three predicted genes encoding antifreeze proteins and gene duplication within the glutathione metabolism pathway are suggested as possible adaptations to cope with this harsh environment. The R. gigas transcriptome represents a powerful new resource for investigating the molecular basis associated with polar biological processes and ecology.
Collapse
Affiliation(s)
- Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-5833-221
| | - Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Matthew C. Cieslak
- Pacific Biosciences Research Center, University of Hawai’i at Manoa, 1993 East-West Rd., Honolulu, HI 96822, USA;
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
36
|
Di Paola M, Meriggi N, Cavalieri D. Applications of Wild Isolates of Saccharomyces Yeast for Industrial Fermentation: The Gut of Social Insects as Niche for Yeast Hybrids' Production. Front Microbiol 2020; 11:578425. [PMID: 33193200 PMCID: PMC7661385 DOI: 10.3389/fmicb.2020.578425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
In the industry of fermented food and beverages, yeast cultures are often selected and standardized in order to ensure a better control of fermentation and a more stable product over time. Several studies have shown that the organoleptic characteristics of fermented products reflect geographic variations of the microbial community composition. Despite investigations of the worldwide distribution and genetic diversity of Saccharomyces cerevisiae, it is still unclear how and to what extent human intervention has shaped the brewer’s yeast population structure. The genotypic and phenotypic characterization of environmental yeast populations and their potential application in the fermentative processes can significantly enrich the industrial fermentation products. Social insects have proven to be closely associated to the yeasts ecology. The relationships between yeasts and insects represent a fundamental aspect for understanding the ecological and evolutionary forces shaping their adaptation to different niches. Studies on phylogenetic relationships of S. cerevisiae populations showed genetic differences among strains isolated from gut and non-gut environments (i.e., natural sources and fermentation). Recent evidences showed that insect’s gut is a reservoir and an evolutionary niche for Saccharomyces, contributing to its survival and evolution, favoring its dispersion, mating and improving the inter-specific hybrids production during hibernation. Here, we discuss the potential use of social insects for production of a wide range of hybrid yeasts from environmental Saccharomyces isolates suitable for industrial and biotechnological applications.
Collapse
Affiliation(s)
- Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
37
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
38
|
Nguyen THM, Sondhi S, Ziesel A, Paliwal S, Fiumera HL. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae. BMC Evol Biol 2020; 20:128. [PMID: 32977769 PMCID: PMC7517635 DOI: 10.1186/s12862-020-01685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial function requires numerous genetic interactions between mitochondrial- and nuclear- encoded genes. While selection for optimal mitonuclear interactions should result in coevolution between both genomes, evidence for mitonuclear coadaptation is challenging to document. Genetic models where mitonuclear interactions can be explored are needed. RESULTS We systematically exchanged mtDNAs between 15 Saccharomyces cerevisiae isolates from a variety of ecological niches to create 225 unique mitochondrial-nuclear genotypes. Analysis of phenotypic profiles confirmed that environmentally-sensitive interactions between mitochondrial and nuclear genotype contributed to growth differences. Exchanges of mtDNAs between strains of the same or different clades were just as likely to demonstrate mitonuclear epistasis although epistatic effect sizes increased with genetic distances. Strains with their original mtDNAs were more fit than strains with synthetic mitonuclear combinations when grown in media that resembled isolation habitats. CONCLUSIONS This study shows that natural variation in mitonuclear interactions contributes to fitness landscapes. Multiple examples of coadapted mitochondrial-nuclear genotypes suggest that selection for mitonuclear interactions may play a role in helping yeasts adapt to novel environments and promote coevolution.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Sargunvir Sondhi
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Andrew Ziesel
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
39
|
Magalhães F, Calton A, Heiniö RL, Gibson B. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiol 2020; 94:103640. [PMID: 33279066 DOI: 10.1016/j.fm.2020.103640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Despite Saccharomyces cerevisiae being a synonym for baker's yeast, the species does not perform well in all baking-related conditions. In particular, dough fermentation, or proofing, is compromised by the species' sensitivity to the low and freezing temperatures that are often used in modern bakeries. Here, screening trials that included representatives of all known Saccharomyces species, showed that S. cerevisiae was generally the most sensitive member of the genus with respect to cold and freezing conditions. We hypothesized therefore that the superior cold tolerance of the non-S. cerevisiae yeast would enable their use as frozen-dough baking strains. To test this, the different yeast species were incorporated into doughs, flash frozen and kept in a frozen state for 14 days. During the proofing stage, dough development was lower in doughs that had been frozen, relative to fresh doughs. This reduction in fermentation performance was however most pronounced with S. cerevisiae. The psychrotolerant yeasts S. eubayanus, S. jurei and S. arboricola showed a strong capacity for post-freeze proofing in terms of dough development and duration of lag phase prior to fermentation. The superior proofing power of these species resulted in breads that were significantly softer and less dense than those prepared with S. cerevisiae. A sensory panel could distinguish the S. cerevisiae and non-S. cerevisiae breads based on their physical properties, but aroma and taste were unaffected by the species employed. To further improve frozen dough baking properties, S. eubayanus, S. jurei and S. arboricola were crossed with baker's yeast through rare mating, and hybrids with improved proofing capacities in both fresh and frozen doughs relative to the parents were created. The use of S. jurei and S. arboricola in baking represents the first potential technological application of these species.
Collapse
Affiliation(s)
- Frederico Magalhães
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland.
| | - Alex Calton
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Raija-Liisa Heiniö
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, P.O. Box 1000, FI-02044, VTT, Espoo, Finland
| |
Collapse
|
40
|
Giannakou K, Cotterrell M, Delneri D. Genomic Adaptation of Saccharomyces Species to Industrial Environments. Front Genet 2020; 11:916. [PMID: 33193572 PMCID: PMC7481385 DOI: 10.3389/fgene.2020.00916] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
The budding yeast has been extensively studied for its physiological performance in fermentative environments and, due to its remarkable plasticity, is used in numerous industrial applications like in brewing, baking and wine fermentations. Furthermore, thanks to its small and relatively simple eukaryotic genome, the molecular mechanisms behind its evolution and domestication are more easily explored. Considerable work has been directed into examining the industrial adaptation processes that shaped the genotypes of species and hybrids belonging to the Saccharomyces group, specifically in relation to beverage fermentation performances. A variety of genetic mechanisms are responsible for the yeast response to stress conditions, such as genome duplication, chromosomal re-arrangements, hybridization and horizontal gene transfer, and these genetic alterations are also contributing to the diversity in the Saccharomyces industrial strains. Here, we review the recent genetic and evolutionary studies exploring domestication and biodiversity of yeast strains.
Collapse
Affiliation(s)
- Konstantina Giannakou
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Cloudwater Brew Co., Manchester, United Kingdom
| | | | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Szabó A, Antunovics Z, Karanyicz E, Sipiczki M. Diversity and Postzygotic Evolution of the Mitochondrial Genome in Hybrids of Saccharomyces Species Isolated by Double Sterility Barrier. Front Microbiol 2020; 11:838. [PMID: 32457720 PMCID: PMC7221252 DOI: 10.3389/fmicb.2020.00838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Eukaryotic species are reproductively isolated by sterility barriers that prevent interspecies fertilization (prezygotic sterility barrier) or the fertilization results in infertile offspring (postzygotic sterility barrier). The Saccharomyces species are isolated by postzygotic sterility barriers. Their allodiploid hybrids form no viable gametes (ascospores) and the viable ascospores of the allotetraploids cannot fertilize (conjugate). Our previous work revealed that this mechanism of reproductive isolation differs from those operating in plants and animals and we designated it double sterility barrier (the failure of homeologous chromosomes to pair and the repression of mating by mating-type heterozygosity). Other studies implicated nucleo-mitochondrial incompatibilities in the sterility of the Saccharomyces hybrids, a mechanism assumed to play a central role in the reproductive isolation of animal species. In this project the mitochondrial genomes of 50 cevarum (S. cerevisiae × S. uvarum) hybrids were analyzed. 62% had S. cerevisiae mitotypes, 4% had S. uvarum mitotypes, and 34% had recombinant mitotypes. All but one hybrid formed viable spores indicating that they had genomes larger than allodiploid. Most of these spores were sterile (no sporulation in the clone of vegetative descendants; a feature characteristic of allodiploids). But regardless of their mitotypes, most hybrids could also form fertile alloaneuploid spore clones at low frequencies upon the loss of the MAT-carrying chromosome of the S. uvarum subgenome during meiosis. Hence, the cevarum alloploid nuclear genome is compatible with both parental mitochondrial genomes as well as with their recombinants, and the sterility of the hybrids is maintained by the double sterility barrier (determined in the nuclear genome) rather than by nucleo-mitochondrial incompatibilities. During allotetraploid sporulation both the nuclear and the mitochondrial genomes of the hybrids could segregate but no correlation was observed between the sterility or the fertility of the spore clones and their mitotypes. Nucleo-mitochondrial incompatibility was manifested as respiration deficiency in certain meiotic segregants. As respiration is required for meiosis-sporulation but not for fertilization (conjugation), these segregants were deficient only in sporulation. Thus, the nucleo-mitochondrial incompatibility affects the sexual processes only indirectly through the inactivation of respiration and causes only partial sterility in certain segregant spore clones.
Collapse
Affiliation(s)
| | | | | | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Abstract
Allopolyploidy generates diversity by increasing the number of copies and sources of chromosomes. Many of the best-known evolutionary radiations, crops, and industrial organisms are ancient or recent allopolyploids. Allopolyploidy promotes differentiation and facilitates adaptation to new environments, but the tools to test its limits are lacking. Here we develop an iterative method of Hybrid Production (iHyPr) to combine the genomes of multiple budding yeast species, generating Saccharomyces allopolyploids of at least six species. When making synthetic hybrids, chromosomal instability and cell size increase dramatically as additional copies of the genome are added. The six-species hybrids initially grow slowly, but they rapidly regain fitness and adapt, even as they retain traits from multiple species. These new synthetic yeast hybrids and the iHyPr method have potential applications for the study of polyploidy, genome stability, chromosome segregation, and bioenergy. Many industrial organisms are the result of recent or ancient allopolypoidy events. Here the authors iteratively combine the genomes of six yeast species to generate a viable hybrid.
Collapse
|
43
|
Gurgel CFD, Camacho O, Minne AJP, Wernberg T, Coleman MA. Marine Heatwave Drives Cryptic Loss of Genetic Diversity in Underwater Forests. Curr Biol 2020; 30:1199-1206.e2. [PMID: 32109397 DOI: 10.1016/j.cub.2020.01.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 11/19/2022]
Abstract
Extreme events have profound ecological impacts on species and ecosystems, including range contractions and collapse of entire ecosystems. Although theory predicts that extreme events cause loss of genetic diversity, empirical demonstrations are rare, obscuring implications for future adaptive capacity of species and populations. Here, we use rare genetic data from before an extreme event to empirically demonstrate massive and cryptic loss of genetic diversity across ∼800 km of underwater forests following the most severe marine heatwave on record. Two forest-forming seaweeds (Sargassum fallax and Scytothalia dorycarpa) lost ∼30%-65% of average genetic diversity within the 800-km footprint of the heatwave and up to 100% of diversity at some sites. Populations became dominated by single haplotypes that were often not dominant or present prior to the heatwave. Strikingly, these impacts were cryptic and not reflected in measures of forest cover used to determine ecological impact of the heatwave. Our results show that marine heatwaves can drive strong loss of genetic diversity, which may compromise adaptability to future climatic change.
Collapse
Affiliation(s)
- Carlos Frederico Deluqui Gurgel
- Centro de Ciências Biológicas, Departamento de Botânica, Laboratório de Ficologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 99040-900, Brazil; State Herbarium of South Australia, Department for Environment and Natural Resources, SA State Government, GPO Box 1047, Adelaide, SA 5001, Australia.
| | - Olga Camacho
- Centro de Ciências Biológicas, Departamento de Botânica, Laboratório de Ficologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 99040-900, Brazil
| | - Antoine J P Minne
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Melinda A Coleman
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia; Southern Cross University, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia.
| |
Collapse
|
44
|
Hewitt SK, Duangrattanalert K, Burgis T, Zeef LAH, Naseeb S, Delneri D. Plasticity of Mitochondrial DNA Inheritance and its Impact on Nuclear Gene Transcription in Yeast Hybrids. Microorganisms 2020; 8:microorganisms8040494. [PMID: 32244414 PMCID: PMC7232527 DOI: 10.3390/microorganisms8040494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial DNA (mtDNA) in yeast is biparentally inherited, but colonies rapidly lose one type of parental mtDNA, thus becoming homoplasmic. Therefore, hybrids between the yeast species possess two homologous nuclear genomes, but only one type of mitochondrial DNA. We hypothesise that the choice of mtDNA retention is influenced by its contribution to hybrid fitness in different environments, and the allelic expression of the two nuclear sub-genomes is affected by the presence of different mtDNAs in hybrids. Saccharomyces cerevisiae/S. uvarum hybrids preferentially retained S. uvarum mtDNA when formed on rich media at colder temperatures, while S. cerevisiae mtDNA was primarily retained on non-fermentable carbon source, at any temperature. Transcriptome data for hybrids harbouring different mtDNA showed a strong environmentally dependent allele preference, which was more important in respiratory conditions. Co-expression analysis for specific biological functions revealed a clear pattern of concerted allelic transcription within the same allele type, which supports the notion that the hybrid cell works preferentially with one set of parental alleles (or the other) for different cellular functions. Given that the type of mtDNA retained in hybrids affects both nuclear expression and fitness, it might play a role in driving hybrid genome evolution in terms of gene retention and loss.
Collapse
Affiliation(s)
- Sarah K Hewitt
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, UK
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Kobchai Duangrattanalert
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, UK
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Tim Burgis
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Leo A H Zeef
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Samina Naseeb
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, UK
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, UK
- Division of Evolution and Genomic Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
45
|
Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S. arboricola had a lower amino acid net uptake than S. cerevisiae. Additionally, this research found an increase in ethanolic fermentation from pyruvate and increased sulfur metabolism. Together, these results suggest S. arboricola is poised for in-depth metabolomic exploration in sake fermentation.
Collapse
|
46
|
Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. BEVERAGES 2020. [DOI: 10.3390/beverages6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.
Collapse
|
47
|
Multiple Changes Underlie Allelic Divergence of CUP2 Between Saccharomyces Species. G3-GENES GENOMES GENETICS 2019; 9:3595-3600. [PMID: 31519745 PMCID: PMC6829129 DOI: 10.1534/g3.119.400616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under the model of micromutationism, phenotypic divergence between species is caused by accumulation of many small-effect changes. While mapping the causal changes to single nucleotide resolution could be difficult for diverged species, genetic dissection via chimeric constructs allows us to evaluate whether a large-effect gene is composed of many small-effect nucleotide changes. In a previously described non-complementation screen, we found an allele difference of CUP2, a copper-binding transcription factor, underlies divergence in copper resistance between Saccharomyces cerevisiae and S. uvarum. Here, we tested whether the allele effect of CUP2 was caused by multiple nucleotide changes. By analyzing chimeric constructs containing four separate regions in the CUP2 gene, including its distal promoter, proximal promoter, DNA binding domain and transcriptional activation domain, we found that all four regions of the S. cerevisiae allele conferred copper resistance, with the proximal promoter showing the largest effect, and that both additive and epistatic effects are likely involved. These findings support a model of multiple changes underlying evolution and suggest an important role of both protein coding and cis-regulatory changes in evolution.
Collapse
|
48
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
49
|
Langdon QK, Peris D, Baker EP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 2019; 3:1576-1586. [PMID: 31636426 DOI: 10.1038/s41559-019-0998-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - EmilyClare P Baker
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA. .,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|