1
|
Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner GC, Manfra MJ, Tarucha S. Phase engineering of anomalous Josephson effect derived from Andreev molecules. SCIENCE ADVANCES 2023; 9:eadj3698. [PMID: 38091387 PMCID: PMC10848717 DOI: 10.1126/sciadv.adj3698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024]
Abstract
A Josephson junction (JJ) is a key device for developing superconducting circuits, wherein a supercurrent in the JJ is controlled by the phase difference between the two superconducting electrodes. When two JJs sharing one superconducting electrode are coherently coupled and form the Andreev molecules, a supercurrent of one JJ is expected to be nonlocally controlled by the phase difference of another JJ. Here, we evaluate the supercurrent in one of the coupled two JJs as a function of local and nonlocal phase differences. Consequently, the results exhibit that the nonlocal phase control generates a finite supercurrent even when the local phase difference is zero. In addition, an offset of the local phase difference giving the JJ ground state depends on the nonlocal phase difference. These features demonstrate the anomalous Josephson effect realized by the nonlocal phase control. Our results provide a useful concept for engineering superconducting devices such as phase batteries and dissipationless rectifiers.
Collapse
Affiliation(s)
- Sadashige Matsuo
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takaya Imoto
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomohiro Yokoyama
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yosuke Sato
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tyler Lindemann
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Sergei Gronin
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
| | - Geoffrey C. Gardner
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
| | - Michael J. Manfra
- Birck Nanotechnology Center, Purdue University,, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner GC, Nakosai S, Tanaka Y, Manfra MJ, Tarucha S. Phase-dependent Andreev molecules and superconducting gap closing in coherently-coupled Josephson junctions. Nat Commun 2023; 14:8271. [PMID: 38092786 PMCID: PMC10719386 DOI: 10.1038/s41467-023-44111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
The Josephson junction (JJ) is an essential element of superconducting (SC) devices for both fundamental and applied physics. The short-range coherent coupling of two adjacent JJs forms Andreev molecule states (AMSs), which provide a new ingredient to engineer exotic SC phenomena such as topological SC states and Andreev qubits. Here we provide tunneling spectroscopy measurements on a device consisting of two electrically controllable planar JJs sharing a single SC electrode. We discover that Andreev spectra in the coupled JJ are highly modulated from those in the single JJs and possess phase-dependent AMS features reproduced in our numerical calculation. Notably, the SC gap closing due to the AMS formation is experimentally observed. Our results help in understanding SC transport derived from the AMS and promoting the use of AMS physics to engineer topological SC states and quantum information devices.
Collapse
Affiliation(s)
- Sadashige Matsuo
- Center for Emergent Matter Science, RIKEN, Saitama, 351-0198, Japan.
| | - Takaya Imoto
- Center for Emergent Matter Science, RIKEN, Saitama, 351-0198, Japan
- Department of Applied Physics, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tomohiro Yokoyama
- Department of Materials Engineering Science, Osaka University, Osaka, 560-8531, Japan.
| | - Yosuke Sato
- Center for Emergent Matter Science, RIKEN, Saitama, 351-0198, Japan
| | - Tyler Lindemann
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Sergei Gronin
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Geoffrey C Gardner
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Sho Nakosai
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Yukio Tanaka
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| | - Michael J Manfra
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, Saitama, 351-0198, Japan.
- RIKEN Center for Quantum Computing, RIKEN, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Vekris A, Estrada Saldaña JC, Kanne T, Hvid-Olsen T, Marnauza M, Olsteins D, Wauters MM, Burrello M, Nygård J, Grove-Rasmussen K. Electronic Transport in Double-Nanowire Superconducting Islands with Multiple Terminals. NANO LETTERS 2022; 22:5765-5772. [PMID: 35833741 DOI: 10.1021/acs.nanolett.2c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We characterize in situ grown parallel nanowires bridged by a superconducting island. The magnetic-field and temperature dependence of Coulomb blockade peaks measured across different pairs of nanowire ends suggest the presence of a subgap state extended over the hybrid parallel-nanowire island. Being gate-tunable, accessible by multiple terminals, and free of quasiparticle poisoning, these nanowires show promise for the implementation of several proposals that rely on parallel nanowire platforms.
Collapse
Affiliation(s)
- Alexandros Vekris
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research (SDC) SDC Building, Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, 101408 Beijing, China
| | | | - Thomas Kanne
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thor Hvid-Olsen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mikelis Marnauza
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dags Olsteins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Matteo M Wauters
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michele Burrello
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jesper Nygård
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kasper Grove-Rasmussen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Sato Y, Ueda K, Takeshige Y, Kamata H, Li K, Samuelson L, Xu HQ, Matsuo S, Tarucha S. Quasiparticle Trapping at Vortices Producing Josephson Supercurrent Enhancement. PHYSICAL REVIEW LETTERS 2022; 128:207001. [PMID: 35657870 DOI: 10.1103/physrevlett.128.207001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The Josephson junction of a strong spin-orbit material under a magnetic field is a promising Majorana fermion candidate. Supercurrent enhancement by a magnetic field has been observed in the InAs nanowire Josephson junctions and assigned to a topological transition. In this work we observe a similar phenomenon but discuss the nontopological origin by considering the trapping of quasiparticles by vortices that penetrate the superconductor under a finite magnetic field. This assignment is supported by the observed hysteresis of the switching current when sweeping up and down the magnetic field. Our experiment shows the importance of quasiparticles in superconducting devices with a magnetic field, which can provide important insights for the design of qubits using superconductors.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kento Ueda
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuusuke Takeshige
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Kamata
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Kan Li
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan, Shenzhen, Guangdong 518055, China
| | - H Q Xu
- Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China
- Division of Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Sadashige Matsuo
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Seigo Tarucha
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Ranni A, Brange F, Mannila ET, Flindt C, Maisi VF. Real-time observation of Cooper pair splitting showing strong non-local correlations. Nat Commun 2021; 12:6358. [PMID: 34737273 PMCID: PMC8569201 DOI: 10.1038/s41467-021-26627-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022] Open
Abstract
Controlled generation and detection of quantum entanglement between spatially separated particles constitute an essential prerequisite both for testing the foundations of quantum mechanics and for realizing future quantum technologies. Splitting of Cooper pairs from a superconductor provides entangled electrons at separate locations. However, experimentally accessing the individual split Cooper pairs constitutes a major unresolved issue as they mix together with electrons from competing processes. Here, we overcome this challenge with the first real-time observation of the splitting of individual Cooper pairs, enabling direct access to the time-resolved statistics of Cooper pair splitting. We determine the correlation statistics arising from two-electron processes and find a pronounced peak that is two orders of magnitude larger than the background. Our experiment thereby allows to unambiguously pinpoint and select split Cooper pairs with 99% fidelity. These results open up an avenue for performing experiments that tap into the spin-entanglement of split Cooper pairs. The splitting of Cooper pairs in superconductors has been challenging to detect experimentally. Here, the authors observe the real-time splitting of individual Cooper pairs in a superconducting device.
Collapse
Affiliation(s)
- Antti Ranni
- NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.
| | - Fredrik Brange
- Department of Applied Physics, Aalto University, 00076, Aalto, Finland
| | - Elsa T Mannila
- Department of Applied Physics, Aalto University, 00076, Aalto, Finland
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076, Aalto, Finland
| | - Ville F Maisi
- NanoLund and Solid State Physics, Lund University, Box 118, 22100, Lund, Sweden.
| |
Collapse
|
6
|
Kürtössy O, Scherübl Z, Fülöp G, Lukács IE, Kanne T, Nygård J, Makk P, Csonka S. Andreev Molecule in Parallel InAs Nanowires. NANO LETTERS 2021; 21:7929-7937. [PMID: 34538054 PMCID: PMC8517978 DOI: 10.1021/acs.nanolett.1c01956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Coupling individual atoms fundamentally changes the state of matter: electrons bound to atomic cores become delocalized turning an insulating state to a metallic one. A chain of atoms could lead to more exotic states if the tunneling takes place via the superconducting vacuum and can induce topologically protected excitations like Majorana or parafermions. Although coupling a single atom to a superconductor is well studied, the hybridization of two sites with individual tunability was not reported yet. The peculiar vacuum of the Bardeen-Cooper-Schrieffer (BCS) condensate opens the way to annihilate or generate two electrons from the bulk resulting in a so-called Andreev molecular state. By employing parallel nanowires with an Al shell, two artificial atoms were created at a minimal distance with an epitaxial superconducting link between. Hybridization via the BCS vacuum was observed and the spectrum of an Andreev molecule as a function of level positions was explored for the first time.
Collapse
Affiliation(s)
- Olivér Kürtössy
- Department
of Physics and Nanoelectronics “Momentum” Research Group
of the Hungarian Academy of Sciences, Budapest
University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
| | - Zoltán Scherübl
- Department
of Physics and Nanoelectronics “Momentum” Research Group
of the Hungarian Academy of Sciences, Budapest
University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
- University
of Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 38000 Grenoble, France
| | - Gergö Fülöp
- Department
of Physics and Nanoelectronics “Momentum” Research Group
of the Hungarian Academy of Sciences, Budapest
University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
| | - István Endre Lukács
- Center
for Energy Research, Institute of Technical
Physics and Material Science, Konkoly-Thege Miklós út 29-33, H-1121, Budapest, Hungary
| | - Thomas Kanne
- Center
for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jesper Nygård
- Center
for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Péter Makk
- Department
of Physics and Nanoelectronics “Momentum” Research Group
of the Hungarian Academy of Sciences, Budapest
University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
| | - Szabolcs Csonka
- Department
of Physics and Nanoelectronics “Momentum” Research Group
of the Hungarian Academy of Sciences, Budapest
University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
| |
Collapse
|
7
|
Indolese DI, Karnatak P, Kononov A, Delagrange R, Haller R, Wang L, Makk P, Watanabe K, Taniguchi T, Schönenberger C. Compact SQUID Realized in a Double-Layer Graphene Heterostructure. NANO LETTERS 2020; 20:7129-7135. [PMID: 32872789 DOI: 10.1021/acs.nanolett.0c02412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2D systems that host 1D helical states are advantageous from the perspective of scalable topological quantum computation when coupled to a superconductor. Graphene is particularly promising for its high electronic quality, its versatility in van der Waals heterostructures, and its electron- and hole-like degenerate 0th Landau level. Here we study a compact double-layer graphene SQUID (superconducting quantum interference device), where the superconducting loop is reduced to the superconducting contacts connecting two parallel graphene Josephson junctions. Despite the small size of the SQUID, it is fully tunable by the independent gate control of the chemical potentials in both layers. Furthermore, both Josephson junctions show a skewed current-phase relationship, indicating the presence of superconducting modes with high transparency. In the quantum Hall regime, we measure a well-defined conductance plateau of 2e2/h indicative of counter-propagating edge channels in the two layers.
Collapse
Affiliation(s)
- David I Indolese
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Paritosh Karnatak
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Artem Kononov
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Raphaëlle Delagrange
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Roy Haller
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Lujun Wang
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Péter Makk
- Department of Physics, Budapest University of Technology and Economics and Nanoelectronics Momentum Research Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Christian Schönenberger
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|