1
|
Reynolds AM. Spatial correlations in laboratory insect swarms. J R Soc Interface 2024; 21:20240450. [PMID: 39378982 PMCID: PMC11495674 DOI: 10.1098/rsif.2024.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024] Open
Abstract
In contrast with flocks of birds, schools of fish and herds of animals, swarms of the non-biting midge Chironomus riparius do not possess global order and under quiescent conditions velocities are only weakly correlated at long distances. Without such order it is challenging to characterize the collective behaviours of the swarms which until now have only been evident in their coordinated responses to disturbances. Here I show that the positions of the midges in laboratory swarms are maximally anticorrelated. This novel form of long-range ordering has until now gone unnoticed in the literature on collective animal movements. Here, its occurrence is attributed to midges being, in nearly equal measure, attracted towards the centre of the swarm and repelled by one another. It is shown that the midge swarms are poised at the cusp of a stable-unstable phase transition.
Collapse
|
2
|
Yuan AE, Shou W. A rigorous and versatile statistical test for correlations between stationary time series. PLoS Biol 2024; 22:e3002758. [PMID: 39146390 PMCID: PMC11398661 DOI: 10.1371/journal.pbio.3002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/13/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
In disciplines from biology to climate science, a routine task is to compute a correlation between a pair of time series and determine whether the correlation is statistically significant (i.e., unlikely under the null hypothesis that the time series are independent). This problem is challenging because time series typically exhibit autocorrelation and thus cannot be properly analyzed with the standard iid-oriented statistical tests. Although there are well-known parametric tests for time series, these are designed for linear correlation statistics and thus not suitable for the increasingly popular nonlinear correlation statistics. There are also nonparametric tests that can be used with any correlation statistic, but for these, the conditions that guarantee correct false positive rates are either restrictive or unclear. Here, we describe the truncated time-shift (TTS) test, a nonparametric procedure to test for dependence between 2 time series. We prove that this test correctly controls the false positive rate as long as one of the time series is stationary, a minimally restrictive requirement among current tests. The TTS test is versatile because it can be used with any correlation statistic. Using synthetic data, we demonstrate that this test performs correctly even while other tests suffer high false positive rates. In simulation examples, simple guidelines for parameter choices allow high statistical power to be achieved with sufficient data. We apply the test to datasets from climatology, animal behavior, and microbiome science, verifying previously discovered dependence relationships and detecting additional relationships.
Collapse
Affiliation(s)
- Alex E Yuan
- Molecular and Cellular Biology PhD program, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Wenying Shou
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
3
|
Senthamizhan R, Gopal R, Chandrasekar VK. Data-driven exploration of swarmalators with second-order harmonics. Phys Rev E 2024; 109:064303. [PMID: 39020985 DOI: 10.1103/physreve.109.064303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/02/2024] [Indexed: 07/20/2024]
Abstract
We explore the dynamics of a swarmalator population comprising second-order harmonics in phase interaction. A key observation in our study is the emergence of the active asynchronous state in swarmalators with second-order harmonics, mirroring findings in the one-dimensional analog of the model, accompanied by the formation of clustered states. Particularly, we observe a transition from the static asynchronous state to the active phase wave state via the active asynchronous state. We have successfully delineated and quantified the stability boundary of the active asynchronous state through a completely data-driven method. This was achieved by utilizing the enhanced image processing capabilities of convolutional neural networks, specifically, the U-Net architecture. Complementing this data-driven analysis, our study also incorporates an analytical stability of the clustered states, providing a multifaceted perspective on the system's behavior. Our investigation not only sheds light on the nuanced behavior of swarmalators under second-order harmonics, but also demonstrates the efficacy of convolutional neural networks in analyzing complex dynamical systems.
Collapse
Affiliation(s)
| | - R Gopal
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| | | |
Collapse
|
4
|
Kuntz G, Huang J, Rask M, Lindgren-Ruby A, Shinsato JY, Bi D, Tabatabai AP. Spatial confinement affects the heterogeneity and interactions between shoaling fish. Sci Rep 2024; 14:12296. [PMID: 38811673 DOI: 10.1038/s41598-024-63245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Living objects are able to consume chemical energy and process information independently from others. However, living objects can coordinate to form ordered groups such as schools of fish. This work considers these complex groups as living materials and presents imaging-based experiments of laboratory schools of fish to understand how activity, which is a non-equilibrium feature, affects the structure and dynamics of a group. We use spatial confinement to control the motion and structure of fish within quasi-2D shoals of fish and use image analysis techniques to make quantitative observations of the structures, their spatial heterogeneity, and their temporal fluctuations. Furthermore, we utilize Monte Carlo simulations to replicate the experimentally observed data which provides insight into the effective interactions between fish and confirms the presence of a confinement-based behavioral preference transition. In addition, unlike in short-range interacting systems, here structural heterogeneity and dynamic activities are positively correlated as a result of complex interplay between spatial arrangement and behavioral dynamics in fish collectives.
Collapse
Affiliation(s)
- Gabriel Kuntz
- Department of Physics, Seattle University, Seattle, WA, 98122, USA
| | - Junxiang Huang
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Mitchell Rask
- Department of Physics, Seattle University, Seattle, WA, 98122, USA
| | | | - Jacob Y Shinsato
- Department of Physics, Seattle University, Seattle, WA, 98122, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - A Pasha Tabatabai
- Department of Physics, Seattle University, Seattle, WA, 98122, USA.
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, 93410, USA.
| |
Collapse
|
5
|
Reynolds AM. Mosquito swarms shear harden. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:126. [PMID: 38063901 PMCID: PMC10709253 DOI: 10.1140/epje/s10189-023-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Recently Cavagna et al. (Sci Rep 13(1): 8745, 2023) documented the swarming behaviors of laboratory-based Anopheles gambiae mosquitoes. Here key observations from this 3D-video tracking study are reproduced by a minimally structured (maximum entropy) stochastic trajectory model. The modelling shows that in contrast with midge swarms which are a form of collective behavior, unperturbed mosquito swarms are more like collections of individuals that independently circulate around a fixed location. The modelling predicts the observed response Anopheles gambiae mosquitoes in wild swarms to varying wind speeds (Butail et al. in J Med Entomol 50(3): 552-559, 2013). It is shown that this response can be attributed to shear hardening. This is because mosquitoes are found to be attracted to the centre of the swarm by an effective force that increases with increasing flight speed. Mosquitoes can therefore better resist the influence of environmental disturbances by increasing their flight speeds. This contrasts with other emergent mechanical-like properties of swarming which arise accidentally without a change in an individual's behavior. The new results add to the growing realization that perturbations can drive swarms into more robust states.
Collapse
|
6
|
Reynolds AM. Phase transitions in insect swarms. Phys Biol 2023; 20:054001. [PMID: 37557188 DOI: 10.1088/1478-3975/aceece] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
In contrast with laboratory insect swarms, wild insect swarms display significant coordinated behaviour. It has been hypothesised that the presence of a fluctuating environment drives the formation of transient, local order (synchronized subgroups), and that this local order pushes the swarm into a new state that is robust to environmental perturbations. The hypothesis is supported by observations of swarming mosquitoes. Here I provide numerical evidence that the formation of transient, local order is an accidental by-product of the strengthening of short-range repulsion which is expected in the presence of environmental fluctuations. The results of the numerical simulations reveal that this strengthening of the short-range can drive swarms into a crystalline phase containing subgroups that participate in cooperative ring exchanges-a new putative form of collective animal movement lacking velocity correlation. I thereby demonstrate that the swarm state and structure may be tuneable with environmental noise as a control parameter. Predicted properties of the collective modes are consistent with observations of transient synchronized subgroups in wild mosquito swarms that contend with environmental disturbances. When mutual repulsion becomes sufficiently strong, swarms are, in accordance with observations, predicted to form near stationary crystalline states. The analysis suggests that the many different forms of swarming motions observed across insect species are not distinctly different phenomena but are instead different phases of a single phenomenon.
Collapse
Affiliation(s)
- Andy M Reynolds
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
7
|
Islam MS, Faruque IA. Insect visuomotor delay adjustments in group flight support swarm cohesion. Sci Rep 2023; 13:6407. [PMID: 37076527 PMCID: PMC10115836 DOI: 10.1038/s41598-023-32675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Flying insects routinely demonstrate coordinated flight in crowded assemblies despite strict communication and processing constraints. This study experimentally records multiple flying insects tracking a moving visual stimulus. System identification techniques are used to robustly identify the tracking dynamics, including a visuomotor delay. The population delay distributions are quantified for solo and group behaviors. An interconnected visual swarm model incorporating heterogeneous delays is developed, and bifurcation analysis and swarm simulation are applied to assess swarm stability under the delays. The experiment recorded 450 insect trajectories and quantified visual tracking delay variation. Solitary tasks showed a 30ms average delay and standard deviation of 50ms, while group behaviors show a 15ms average and 8ms standard deviation. Analysis and simulation indicate that the delay adjustments during group flight support swarm formation and center stability, and are robust to measurement noise. These results quantify the role of visuomotor delay heterogeneity in flying insects and their role in supporting swarm cohesion through implicit communication.
Collapse
|
8
|
Muratore IB, Garnier S. Ontogeny of collective behaviour. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220065. [PMID: 36802780 PMCID: PMC9939274 DOI: 10.1098/rstb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
During their lifetime, superorganisms, like unitary organisms, undergo transformations that change the machinery of their collective behaviour. Here, we suggest that these transformations are largely understudied and propose that more systematic research into the ontogeny of collective behaviours is needed if we hope to better understand the link between proximate behavioural mechanisms and the development of collective adaptive functions. In particular, certain social insects engage in self-assemblage, forming dynamic and physically connected architectures with striking similarities to developing multicellular organisms, making them good model systems for ontogenetic studies of collective behaviour. However, exhaustive time series and three-dimensional data are required to thoroughly characterize the different life stages of the collective structures and the transitions between these stages. The well-established fields of embryology and developmental biology offer practical tools and theoretical frameworks that could speed up the acquisition of new knowledge about the formation, development, maturity and dissolution of social insect self-assemblages and, by extension, other superorganismal behaviours. We hope that this review will encourage an expansion of the ontogenetic perspective in the field of collective behaviour and, in particular, in self-assemblage research, which has far-reaching applications in robotics, computer science and regenerative medicine. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Reynolds AM. Stochasticity may generate coherent motion in bird flocks. Phys Biol 2023; 20. [PMID: 36758247 DOI: 10.1088/1478-3975/acbad7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Murmurations along with other forms of flocking have come to epitomize collective animal movements. Most studies into these stunning aerial displays have aimed to understand how coherent motion may emerge from simple behavioral rules and behavioral correlations. These studies may now need revision because recently it has been shown that flocking birds, like swarming insects, behave on the average as if they are trapped in elastic potential wells. Here I show, somewhat paradoxically, how coherent motion can be generated by variations in the intensity of multiplicative noise which causes the shape of a potential well to change, thereby shifting the positions and strengths of centres of attraction. Each bird, irrespective of its position in the flock will respond in a similar way to such changes, giving the impression that the flock behaves as one, and typically resulting in scale-free correlations. I thereby show how correlations can be an emergent property of noisy, confining potential wells. I also show how such wells can lead to high density borders, a characteristic of flocks, and I show how they can account for the complex patterns of collective escape patterns of starling flocks under predation. I suggest swarming and flocking do not constitute two distinctly different kinds of collective behavior but rather that insects are residing in relatively stable potential wells whilst birds are residing in unstable potential wells. It is shown how, dependent upon individual perceptual capabilities, bird flocks can be poised at criticality.
Collapse
Affiliation(s)
- Andy M Reynolds
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
10
|
Multimodal collective swimming of magnetically articulated modular nanocomposite robots. Nat Commun 2022; 13:6750. [PMID: 36347849 PMCID: PMC9643480 DOI: 10.1038/s41467-022-34430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetically responsive composites can impart maneuverability to miniaturized robots. However, collective actuation of these composite robots has rarely been achieved, although conducting cooperative tasks is a promising strategy for accomplishing difficult missions with a single robot. Here, we report multimodal collective swimming of ternary-nanocomposite-based magnetic robots capable of on-demand switching between rectilinear translational swimming and rotational swimming. The nanocomposite robots comprise a stiff yet lightweight carbon nanotube yarn (CNTY) framework surrounded by a magnetic polymer composite, which mimics the hierarchical architecture of musculoskeletal systems, yielding magnetically articulated multiple robots with an agile above-water swimmability (~180 body lengths per second) and modularity. The multiple robots with multimodal swimming facilitate the generation and regulation of vortices, enabling novel vortex-induced transportation of thousands of floating microparticles and heavy semi-submerged cargos. The controllable collective actuation of these biomimetic nanocomposite robots can lead to versatile robotic functions, including microplastic removal, microfluidic vortex control, and transportation of pharmaceuticals.
Collapse
|
11
|
Reynolds AM. Comment on 'A physics perspective on collective animal behavior' 2022 Phys. Biol. 19 021004. Phys Biol 2022; 19. [PMID: 36067786 DOI: 10.1088/1478-3975/ac8fd5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
In his insightful and timely review Ouellette [2022] noted three theoretical impediments to progress in understanding and modelling collective animal behavior. Here through novel analyses and by drawing on the latest research I show how these obstacles can be either overcome or negated. I suggest ways in which recent advances in the physics of collective behavior provide significant biological information.
Collapse
Affiliation(s)
- Andy M Reynolds
- Rothamsted Research, Harpenden, UK, Harpenden, AL5 2JQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
12
|
Sesé-Sansa E, Liao GJ, Levis D, Pagonabarraga I, Klapp SHL. Impact of dipole-dipole interactions on motility-induced phase separation. SOFT MATTER 2022; 18:5388-5401. [PMID: 35797661 DOI: 10.1039/d2sm00385f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrodynamic equations are derived by explicitly coarse-graining the microscopic Langevin dynamics, thus allowing for a mapping of the coarse-grained model and particle-resolved simulations. Performing BD simulations at fixed density, we find that dipolar interactions tend to hinder MIPS, as first reported in [Liao et al., Soft Matter, 2020, 16, 2208]. Here we demonstrate that the theoretical approach indeed captures the suppression of MIPS. Moreover, the analysis of the numerically obtained, angle-dependent correlation functions sheds light into the underlying microscopic mechanisms leading to the destabilization of the homogeneous phase.
Collapse
Affiliation(s)
- Elena Sesé-Sansa
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.
| | - Guo-Jun Liao
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| |
Collapse
|
13
|
Ko H, Yu TY, Hu DL. Fire ant rafts elongate under fluid flows. BIOINSPIRATION & BIOMIMETICS 2022; 17:045007. [PMID: 35679139 DOI: 10.1088/1748-3190/ac6d98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Fire ants survive flash floods by linking their bodies together to build waterproof rafts. Most studies of fire ant rafts consider static water conditions, but here, we consider the influence of flow. In particular, when floating on shallow water, the raft can run aground on vegetation, generating stresses in the raft as the water continues to flow around it. In this combined experimental and numerical study, we film the 10 h response of a fire ant raft caught on an anchor and subjected to water flows of 6 cm s-1. In this situation, ant rafts elongate from circular to more streamlined shapes, doubling in aspect ratio before eventually contracting back into smaller circular shapes as they enter dormancy. Ants in upstream regions of the raft exhibit less exploration activity than those downstream, suggesting that ants migrate to areas of lower fluid stress. While the raft is rough, hydrophobic, and heterogeneous in height, we may gain some insight by performing both fluid-structure interaction and agent based simulations on smooth rafts. Elongation to the degree observed is associated with a 48% drag reduction. Moreover, a purely elastic raft does not elongate, but conversely increases its bluff body cross-sectional area. We conclude that ant raftsmust reconfigure to generate the elongated shape observed. This work may provide insights into designing intelligent robotic swarms that can adapt to fluid flows.
Collapse
Affiliation(s)
- Hungtang Ko
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States of America
| | - Ting-Ying Yu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, United States of America
| | - David L Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, United States of America
- School of Biology, Georgia Institute of Technology, United States of America
| |
Collapse
|
14
|
Reynolds AM, McIvor GE, Thornton A, Yang P, Ouellette NT. Stochastic modelling of bird flocks: accounting for the cohesiveness of collective motion. J R Soc Interface 2022; 19:20210745. [PMID: 35440203 PMCID: PMC9019524 DOI: 10.1098/rsif.2021.0745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collective behaviour can be difficult to discern because it is not limited to animal aggregations such as flocks of birds and schools of fish wherein individuals spontaneously move in the same way despite the absence of leadership. Insect swarms are, for example, a form of collective behaviour, albeit one lacking the global order seen in bird flocks and fish schools. Their collective behaviour is evident in their emergent macroscopic properties. These properties are predicted by close relatives of Okubo's 1986 [Adv. Biophys. 22, 1-94. (doi:10.1016/0065-227X(86)90003-1)] stochastic model. Here, we argue that Okubo's stochastic model also encapsulates the cohesiveness mechanism at play in bird flocks, namely the fact that birds within a flock behave on average as if they are trapped in an elastic potential well. That is, each bird effectively behaves as if it is bound to the flock by a force that on average increases linearly as the distance from the flock centre increases. We uncover this key, but until now overlooked, feature of flocking in empirical data. This gives us a means of identifying what makes a given system collective. We show how the model can be extended to account for intrinsic velocity correlations and differentiated social relationships.
Collapse
Affiliation(s)
| | - Guillam E McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Patricia Yang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Patel ML, Ouellette NT. Formation and dissolution of midge swarms. Phys Rev E 2022; 105:034601. [PMID: 35428071 DOI: 10.1103/physreve.105.034601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Using external illumination cues, we induce the formation and dissolution of laboratory swarms of the nonbiting midge Chironomus riparius and study their behavior during these transient processes. In general, swarm formation is slower than swarm dissolution. We find that the swarm property that appears most rapidly during formation and disappears most rapidly during dissolution is an emergent mean radial acceleration pointing toward the center of the swarm. Our results strengthen the conjecture that this central effective force may be used as an indicator to distinguish when the midges are swarming from when they are not.
Collapse
Affiliation(s)
- Manisha L Patel
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
16
|
Ouellette N. A physics perspective on collective animal behavior. Phys Biol 2022; 19. [PMID: 35038691 DOI: 10.1088/1478-3975/ac4bef] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The beautiful dynamic patterns and coordinated motion displayed by groups of social animals are a beautiful example of self-organization in natural farfrom-equilibrium systems. Recent advances in active-matter physics have enticed physicists to begin to consider how their results can be extended from microscale physical or biological systems to groups of real, macroscopic animals. At the same time, advances in measurement technology have led to the increasing availability of high-quality empirical data for the behavior of animal groups both in the laboratory and in the wild. In this review, I survey this available data and the ways that it has been analyzed. I then describe how physicists have approached synthesizing, modeling, and interpreting this information, both at the level of individual animals and at the group scale. In particular, I focus on the kinds of analogies that physicists have made between animal groups and more traditional areas of physics.
Collapse
Affiliation(s)
- Nicholas Ouellette
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California, 94305-6104, UNITED STATES
| |
Collapse
|
17
|
Wagner CG, Norton MM, Park JS, Grover P. Exact Coherent Structures and Phase Space Geometry of Preturbulent 2D Active Nematic Channel Flow. PHYSICAL REVIEW LETTERS 2022; 128:028003. [PMID: 35089772 DOI: 10.1103/physrevlett.128.028003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Confined active nematics exhibit rich dynamical behavior, including spontaneous flows, periodic defect dynamics, and chaotic "active turbulence." Here, we study these phenomena using the framework of exact coherent structures, which has been successful in characterizing the routes to high Reynolds number turbulence of passive fluids. Exact coherent structures are stationary, periodic, quasiperiodic, or traveling wave solutions of the hydrodynamic equations that, together with their invariant manifolds, serve as an organizing template of the dynamics. We compute the dominant exact coherent structures and connecting orbits in a preturbulent active nematic channel flow, which enables a fully nonlinear but highly reduced-order description in terms of a directed graph. Using this reduced representation, we compute instantaneous perturbations that switch the system between disparate spatiotemporal states occupying distant regions of the infinite-dimensional phase space. Our results lay the groundwork for a systematic means of understanding and controlling active nematic flows in the moderate- to high-activity regime.
Collapse
Affiliation(s)
- Caleb G Wagner
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Michael M Norton
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Jae Sung Park
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Piyush Grover
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
18
|
Yang Y, Turci F, Kague E, Hammond CL, Russo J, Royall CP. Dominating lengthscales of zebrafish collective behaviour. PLoS Comput Biol 2022; 18:e1009394. [PMID: 35025883 PMCID: PMC8797201 DOI: 10.1371/journal.pcbi.1009394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self-propelled particles with alignment interactions.
Collapse
Affiliation(s)
- Yushi Yang
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Francesco Turci
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - John Russo
- Department of Physics, Sapienza Università di Roma, Rome, Italy
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Università PSL, Paris, France
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Reynolds AM. Understanding the thermodynamic properties of insect swarms. Sci Rep 2021; 11:14979. [PMID: 34294865 PMCID: PMC8298516 DOI: 10.1038/s41598-021-94582-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Sinhuber et al. (Sci Rep 11:3773, 2021) formulated an equation of state for laboratory swarms of the non-biting midge Chironomus riparius that holds true when the swarms are driven through thermodynamic cycles by the application external perturbations. The findings are significant because they demonstrate the surprising efficacy of classical equilibrium thermodynamics for quantitatively characterizing and predicting collective behaviour in biology. Nonetheless, the equation of state obtained by Sinhuber et al. (2021) is anomalous, lacking a physical analogue, making its' interpretation problematic. Moreover, the dynamical processes underlying the thermodynamic cycling were not identified. Here I show that insect swarms are equally well represented as van der Waals gases and I attribute the possibility of thermodynamic cycling to insect swarms consisting of several overlapping sublayers. This brings about a profound change in the understanding of laboratory swarms which until now have been regarded as consisting of non-interacting individuals and lacking any internal structure. I show how the effective interactions can be attributed to the swarms' internal structure, the external perturbations and to the presence of intrinsic noise. I thereby show that intrinsic noise which is known to be crucial for the emergence of the macroscopic mechanical properties of insect swarms is also crucial for the emergence of their thermodynamic properties as encapsulated by their equation of state.
Collapse
|
20
|
Chatterjee P, Goldenfeld N. Field-theoretic model for chemotaxis in run and tumble particles. Phys Rev E 2021; 103:032603. [PMID: 33862765 DOI: 10.1103/physreve.103.032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/07/2022]
Abstract
In this paper, we develop a field-theoretic description for run and tumble chemotaxis, based on a density-functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multiparticle interactions, soft-core repulsion, and elasticity, is ideal for describing continuum collective phases with particle resolution, but on diffusive timescales. We show that our model exhibits particle aggregation in an externally imposed constant attractant field, as is observed for phototactic or thermotactic agents. We also show that this model captures particle aggregation through self-chemotaxis, an important mechanism that aids quorum-dependent cellular interactions.
Collapse
Affiliation(s)
- Purba Chatterjee
- Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA
| |
Collapse
|
21
|
Reynolds AM. Intrinsic stochasticity and the emergence of collective behaviours in insect swarms. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:22. [PMID: 33686572 DOI: 10.1140/epje/s10189-021-00040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Intrinsic stochasticity associated with finite population size is fundamental to the emergence of collective behaviours in insect swarms. It has been assumed that this intrinsic stochasticity is purely additive (position independent) in quiescent (unperturbed) swarms. Here, I identify the hallmarks of intrinsic multiplicative (position dependent) stochasticity and show that they are evident in quiescent laboratory swarms of the non-biting midge Chironomus riparius. In accordance with theoretical expectations, the smallest well-documented laboratory swarms (containing between 14 and 46 individuals) are found to have q-Gaussian density profiles with [Formula: see text] 1, whereas larger laboratory swarms have Gaussian ([Formula: see text]1) density profiles. I show that these newly identified states are analogous to interstellar clouds and thereby extend a long-standing analogy between insect swarms and self-gravitating systems. Smaller laboratory swarms have been observed and are predicted to be gas-like, filling the available space rather than occupying just a small proportion of it. The new results unify laboratory swarms with wild swarms. Unlike laboratory swarms, wild swarms must contend with environmental (extrinsic) noise and have density profiles that are accurately represented by q-Gaussians with [Formula: see text] 1. Finally, it is shown how intrinsic multiplicative noise allows for the nucleation of swarms away from prominent visual features (basins of attraction) known as swarm markers.
Collapse
|
22
|
Sinhuber M, van der Vaart K, Feng Y, Reynolds AM, Ouellette NT. An equation of state for insect swarms. Sci Rep 2021; 11:3773. [PMID: 33580191 PMCID: PMC7881103 DOI: 10.1038/s41598-021-83303-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
Collective behaviour in flocks, crowds, and swarms occurs throughout the biological world. Animal groups are generally assumed to be evolutionarily adapted to robustly achieve particular functions, so there is widespread interest in exploiting collective behaviour for bio-inspired engineering. However, this requires understanding the precise properties and function of groups, which remains a challenge. Here, we demonstrate that collective groups can be described in a thermodynamic framework. We define an appropriate set of state variables and extract an equation of state for laboratory midge swarms. We then drive swarms through “thermodynamic” cycles via external stimuli, and show that our equation of state holds throughout. Our findings demonstrate a new way of precisely quantifying the nature of collective groups and provide a cornerstone for potential future engineering design.
Collapse
Affiliation(s)
- Michael Sinhuber
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.,Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Kasper van der Vaart
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yenchia Feng
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Eldeen S, Muoio R, Blaisdell-Pijuan P, La N, Gomez M, Vidal A, Ahmed W. Quantifying the non-equilibrium activity of an active colloid. SOFT MATTER 2020; 16:7202-7209. [PMID: 32350487 DOI: 10.1039/d0sm00398k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active matter systems exhibit rich emergent behavior due to constant injection and dissipation of energy at the level of individual agents. Since these systems are far from equilibrium, their dynamics and energetics cannot be understood using the framework of equilibrium statistical mechanics. Recent developments in stochastic thermodynamics extend classical concepts of work, heat, and energy dissipation to fluctuating non-equilibrium systems. We use recent advances in experiment and theory to study the non-thermal dissipation of individual light-activated self-propelled colloidal particles. We focus on characterizing the transition from thermal to non-thermal fluctuations and show that energy dissipation rates on the order of ∼kBT s-1 are measurable from finite time series data.
Collapse
Affiliation(s)
- Sarah Eldeen
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Ryan Muoio
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Paris Blaisdell-Pijuan
- Department of Physics, California State University, Fullerton, CA, USA. and Department of Electrical Engineering, Princeton University, NJ, USA
| | - Ngoc La
- Department of Physics, California State University, Fullerton, CA, USA. and Department of Physics, Massachusetts Institute of Technology, Cambridge, USA
| | - Mauricio Gomez
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Alex Vidal
- Department of Computer Science, California State University, Fullerton, CA, USA
| | - Wylie Ahmed
- Department of Physics, California State University, Fullerton, CA, USA.
| |
Collapse
|
24
|
Reynolds AM. Insect swarms can be bound together by repulsive forces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:39. [PMID: 32556811 DOI: 10.1140/epje/i2020-11963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The cohesion of insect swarms has been attributed to the fact that the resultant internal interactions of the swarming insects produce, on the average, a centrally attractive force that acts on each individual. Here it is shown how insect swarms can also be bound together by centrally forces that on the average are repulsive (outwardly directed from the swarm centres). This is predicted to arise when velocity statistics are heterogeneous (position-dependent). Evidence for repulsive forces is found in laboratory swarms of Chironomus riparius midges. In homogeneous swarms, the net inward acceleration balances the tendency of diffusion (stochastic noise) to transport individuals away from the centre of the swarm. In heterogenous swarms, turbophoresis --the tendency for individuals to migrate in the direction of decreasing kinetic energy-- is operating. The new finding adds to the growing realization that insect swarms are analogous to self-gravitating systems. By acting in opposition to central attraction (gravity), the effects of heterogeneous velocities (energies) are analogous to the effects of dark energy. The emergence of resultant forces from collective behaviours would not be possible if individual flight patterns were themselves unstable. It is shown how individuals reduce the potential for the loose of flight control by minimizing the influence of jerks to which they are subjected.
Collapse
Affiliation(s)
- A M Reynolds
- Rothamsted Research, AL5 2JQ, Harpenden, Hertfordshire, UK.
| |
Collapse
|
25
|
van der Vaart K, Sinhuber M, Reynolds AM, Ouellette NT. Environmental perturbations induce correlations in midge swarms. J R Soc Interface 2020; 17:20200018. [PMID: 32208820 DOI: 10.1098/rsif.2020.0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although collectively behaving animal groups often show large-scale order (such as in bird flocks), they need not always (such as in insect swarms). It has been suggested that the signature of collective behaviour in disordered groups is a residual long-range correlation. However, results in the literature have reported contradictory results as to the presence of long-range correlation in insect swarms, with swarms in the wild displaying correlation but those in a controlled laboratory environment not. We resolve these apparently incompatible results by showing that the external perturbations generically induce the emergence of correlations. We apply a range of different external stimuli to laboratory swarms of the non-biting midge Chironomus riparius, and show that in all cases correlations appear when perturbations are introduced. We confirm the generic nature of these results by showing that they can be reproduced in a stochastic model of swarms. Given that swarms in the wild will always have to contend with environmental stimuli, our results thus harmonize previous findings. These findings emphasize that collective behaviour cannot be understood in isolation without considering its environmental context, and that new research is needed to disentangle the distinct roles of intrinsic dynamics and external stimuli.
Collapse
Affiliation(s)
- Kasper van der Vaart
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Sinhuber
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Reynolds
- Biomathematics and Bioinformatics, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Abstract
Okubo (Okubo 1986 Adv. Biophys. 22, 1-94. (doi:10.1016/0065-227X(86)90003-1)) was the first to propose that insect swarms are analogous to self-gravitating systems. In the intervening years, striking similarities between insect swarms and self-gravitating systems have been uncovered. Nonetheless, experimental observations of laboratory swarms provide no conclusive evidence of long-range forces acting between swarming insects. The insects appear somewhat paradoxically to be tightly bound to the swarm while at the same time weakly coupled inside it. Here, I show how resultant centrally attractive gravitational-like forces can emerge from the observed tendency of insects to continually switch between two distinct flight modes: one that consists of low-frequency manoeuvres and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another insect. The emergent dynamics are consistent with 'adaptive' gravity models of swarming and with variants of the stochastic models of Okubo and Reynolds for the trajectories of swarming insects: models that are in close accord with a plethora of observations of unperturbed and perturbed laboratory swarms. The results bring about a radical change of perspective as swarm properties can now be attributed to known biological behaviours rather than to elusive physical influences.
Collapse
|