1
|
Shen H, Cao K, Liu C, Mao Z, Li Q, Han Q, Sun Y, Yang Z, Xu Y, Wu S, Xu J, Ji A. Kinematics and Flow Field Analysis of Allomyrina dichotoma Flight. Biomimetics (Basel) 2024; 9:777. [PMID: 39727781 DOI: 10.3390/biomimetics9120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, Allomyrina dichotoma (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance. This study investigates A. dichotoma's wing deployment, flight, and retraction behaviors through motion analysis, uncovering the critical role of the elytra in wing folding. We capture the kinematic parameters throughout the entire flight process and develop an accurate kinematic model of A. dichotoma flight. Using smoke visualization, we analyze the flow field generated during flight, revealing the formation of enhanced leading-edge vortices and attached vortices during both upstroke and downstroke phases. These findings uncover the high-lift mechanism underlying A. dichotoma's flight dynamics, offering valuable insights for optimizing beetle-inspired micro aerial vehicles.
Collapse
Affiliation(s)
- Huan Shen
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kai Cao
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chao Liu
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China
| | - Zhiyuan Mao
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qian Li
- College of Mechanical and Electrical Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China
| | - Qingfei Han
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yi Sun
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhikang Yang
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Youzhi Xu
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shutao Wu
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiajun Xu
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Aihong Ji
- Lab of Locomotion Bioinspiration and Intelligent Robots, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees compensate for the adverse effects of sidewind during visually guided landings. J Exp Biol 2024; 227:jeb245432. [PMID: 38506223 PMCID: PMC11112349 DOI: 10.1242/jeb.245432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Flying animals often encounter winds during visually guided landings. However, how winds affect their flight control strategy during landing is unknown. Here, we investigated how sidewind affects the landing performance and sensorimotor control of foraging bumblebees (Bombus terrestris). We trained bumblebees to forage in a wind tunnel, and used high-speed stereoscopic videography to record 19,421 landing maneuvers in six sidewind speeds (0 to 3.4 m s-1), which correspond to winds encountered in nature. Bumblebees landed less often in higher windspeeds, but the landing durations from free flight were not increased by wind. By testing how bumblebees adjusted their landing control to compensate for adverse effects of sidewind on landing, we showed that the landing strategy in sidewind resembled that in still air, but with important adaptations. Bumblebees landing in a sidewind tended to drift downwind, which they controlled for by performing more hover maneuvers. Surprisingly, the increased hover prevalence did not increase the duration of free-flight landing maneuvers, as these bumblebees flew faster towards the landing platform outside the hover phases. Hence, by alternating these two flight modes along their flight path, free-flying bumblebees negated the adverse effects of high windspeeds on landing duration. Using control theory, we hypothesize that bumblebees achieve this by integrating a combination of direct aerodynamic feedback and a wind-mediated mechanosensory feedback control, with their vision-based sensorimotor control loop. The revealed landing strategy may be commonly used by insects landing in windy conditions, and may inspire the development of landing control strategies onboard autonomously flying robots.
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
3
|
Singh S, Garratt M, Srinivasan M, Ravi S. Analysis of collision avoidance in honeybee flight. J R Soc Interface 2024; 21:20230601. [PMID: 38531412 PMCID: PMC10973882 DOI: 10.1098/rsif.2023.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Insects are excellent at flying in dense vegetation and navigating through other complex spatial environments. This study investigates the strategies used by honeybees (Apis mellifera) to avoid collisions with an obstacle encountered frontally during flight. Bees were trained to fly through a tunnel that contained a solitary vertically oriented cylindrical obstacle placed along the midline. Flight trajectories of bees were recorded for six conditions in which the diameter of the obstructing cylinder was systematically varied from 25 mm to 160 mm. Analysis of salient events during the bees' flight, such as the deceleration before the obstacle, and the initiation of the deviation in flight path to avoid collisions, revealed a strategy for obstacle avoidance that is based on the relative retinal expansion velocity generated by the obstacle when the bee is on a collision course. We find that a quantitative model, featuring a controller that extracts specific visual cues from the frontal visual field, provides an accurate characterization of the geometry and the dynamics of the manoeuvres adopted by honeybees to avoid collisions. This study paves the way for the design of unmanned aerial systems, by identifying the visual cues that are used by honeybees for performing robust obstacle avoidance flight.
Collapse
Affiliation(s)
- Shreyansh Singh
- School of Engineering and Technology, University of New South Wales, Canberra, Australia
| | - Matthew Garratt
- School of Engineering and Technology, University of New South Wales, Canberra, Australia
| | - Mandyam Srinivasan
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sridhar Ravi
- School of Engineering and Technology, University of New South Wales, Canberra, Australia
| |
Collapse
|
4
|
Li Q, Li H, Shen H, Yu Y, He H, Feng X, Sun Y, Mao Z, Chen G, Tian Z, Shen L, Zheng X, Ji A. An Aerial-Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces. RESEARCH (WASHINGTON, D.C.) 2023; 6:0144. [PMID: 37228637 PMCID: PMC10204747 DOI: 10.34133/research.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Insects that can perform flapping-wing flight, climb on a wall, and switch smoothly between the 2 locomotion regimes provide us with excellent biomimetic models. However, very few biomimetic robots can perform complex locomotion tasks that combine the 2 abilities of climbing and flying. Here, we describe an aerial-wall amphibious robot that is self-contained for flying and climbing, and that can seamlessly move between the air and wall. It adopts a flapping/rotor hybrid power layout, which realizes not only efficient and controllable flight in the air but also attachment to, and climbing on, the vertical wall through a synergistic combination of the aerodynamic negative pressure adsorption of the rotor power and a climbing mechanism with bionic adhesion performance. On the basis of the attachment mechanism of insect foot pads, the prepared biomimetic adhesive materials of the robot can be applied to various types of wall surfaces to achieve stable climbing. The longitudinal axis layout design of the rotor dynamics and control strategy realize a unique cross-domain movement during the flying-climbing transition, which has important implications in understanding the takeoff and landing of insects. Moreover, it enables the robot to cross the air-wall boundary in 0.4 s (landing), and cross the wall-air boundary in 0.7 s (taking off). The aerial-wall amphibious robot expands the working space of traditional flying and climbing robots, which can pave the way for future robots that can perform autonomous visual monitoring, human search and rescue, and tracking tasks in complex air-wall environments.
Collapse
Affiliation(s)
- Qian Li
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haoze Li
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huan Shen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yangguang Yu
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haoran He
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xincheng Feng
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yi Sun
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyuan Mao
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangming Chen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiangming Zheng
- College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aihong Ji
- College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
5
|
Fuller S, Yu Z, Talwekar YP. A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots. Sci Robot 2022; 7:eabq8184. [DOI: 10.1126/scirobotics.abq8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tiny “gnat robots,” weighing just a few milligrams, were first conjectured in the 1980s. How to stabilize one if it were to hover like a small insect has not been answered. Challenges include the requirement that sensors be both low mass and high bandwidth and that silicon-micromachined rate gyroscopes are too heavy. The smallest robot to perform controlled hovering uses a sensor suite weighing hundreds of milligrams. Here, we demonstrate that an accelerometer represents perhaps the most direct way to stabilize flight while satisfying the extreme size, speed, weight, and power constraints of a flying robot even as it scales down to just a few milligrams. As aircraft scale reduces, scaling physics dictates that the ratio of aerodynamic drag to mass increases. This results in reduced noise in an accelerometer’s airspeed measurement. We show through simulation and experiment on a 30-gram robot that a 2-milligram off-the-shelf accelerometer is able in principle to stabilize a 10-milligram robot despite high noise in the sensor itself. Inspired by wind-vision sensory fusion in the flight controller of the fruit fly
Drosophila melanogaster
, we then added a tiny camera and efficient, fly-inspired autocorrelation-based visual processing to allow the robot to estimate and reject wind as well as control its attitude and flight velocity using a Kalman filter. Our biology-inspired approach, validated on a small flying helicopter, has a wind gust response comparable to the fruit fly and is small and efficient enough for a 10-milligram flying vehicle (weighing less than a grain of rice).
Collapse
Affiliation(s)
- Sawyer Fuller
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science, Seattle, WA, USA
| | - Zhitao Yu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yash P. Talwekar
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Pinto J, Magni PA, O’Brien RC, Dadour IR. Chasing Flies: The Use of Wingbeat Frequency as a Communication Cue in Calyptrate Flies (Diptera: Calyptratae). INSECTS 2022; 13:822. [PMID: 36135523 PMCID: PMC9504876 DOI: 10.3390/insects13090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The incidental sound produced by the oscillation of insect wings during flight provides an opportunity for species identification. Calyptrate flies include some of the fastest and most agile flying insects, capable of rapid changes in direction and the fast pursuit of conspecifics. This flight pattern makes the continuous and close recording of their wingbeat frequency difficult and limited to confined specimens. Advances in sound editor and analysis software, however, have made it possible to isolate low amplitude sounds using noise reduction and pitch detection algorithms. To explore differences in wingbeat frequency between genera and sex, 40 specimens of three-day old Sarcophaga crassipalpis, Lucilia sericata, Calliphora dubia, and Musca vetustissima were individually recorded in free flight in a temperature-controlled room. Results showed significant differences in wingbeat frequency between the four species and intersexual differences for each species. Discriminant analysis classifying the three carrion flies resulted in 77.5% classified correctly overall, with the correct classification of 82.5% of S. crassipalpis, 60% of C. dubia, and 90% of L. sericata, when both mean wingbeat frequency and sex were included. Intersexual differences were further demonstrated by male flies showing significantly higher variability than females in three of the species. These observed intergeneric and intersexual differences in wingbeat frequency start the discussion on the use of the metric as a communication signal by this taxon. The success of the methodology demonstrated differences at the genus level and encourages the recording of additional species and the use of wingbeat frequency as an identification tool for these flies.
Collapse
Affiliation(s)
- Julie Pinto
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Paola A. Magni
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- King’s Centre, Murdoch University Singapore, Singapore 169662, Singapore
| | - R. Christopher O’Brien
- Forensic Sciences Department, Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| | - Ian R. Dadour
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
- Source Certain, Wangara DC, WA 6947, Australia
| |
Collapse
|
7
|
Chen Y, Arase C, Ren Z, Chirarattananon P. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators. MICROMACHINES 2022; 13:mi13071136. [PMID: 35888953 PMCID: PMC9317235 DOI: 10.3390/mi13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Dragonflies are agile and efficient flyers that use two pairs of wings for demonstrating exquisite aerial maneuvers. Compared to two-winged insects such as bees or flies, dragonflies leverage forewing and hindwing interactions for achieving higher efficiency and net lift. Here we develop the first at-scale dragonfly-like robot and investigate the influence of flapping-wing kinematics on net lift force production. Our 317 mg robot is driven by two independent dielectric elastomer actuators that flap four wings at 350 Hz. We extract the robot flapping-wing kinematics using a high-speed camera, and further measure the robot lift forces at different operating frequencies, voltage amplitudes, and phases between the forewings and hindwings. Our robot achieves a maximum lift-to-weight ratio of 1.49, and its net lift force increases by 19% when the forewings and hindwings flap in-phase compared to out-of-phase flapping. These at-scale experiments demonstrate that forewing–hindwing interaction can significantly influence lift force production and aerodynamic efficiency of flapping-wing robots with passive wing pitch designs. Our results could further enable future experiments to achieve feedback-controlled flights.
Collapse
Affiliation(s)
- Yufeng Chen
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (C.A.); (Z.R.)
- Correspondence: (Y.C.); (P.C.); Tel.: +1-617-253-7351 (Y.C.); +852-3442-9550 (P.C.)
| | - Cathleen Arase
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (C.A.); (Z.R.)
| | - Zhijian Ren
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (C.A.); (Z.R.)
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Correspondence: (Y.C.); (P.C.); Tel.: +1-617-253-7351 (Y.C.); +852-3442-9550 (P.C.)
| |
Collapse
|
8
|
Ahmed I, Faruque IA. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:046012. [PMID: 35439741 DOI: 10.1088/1748-3190/ac6849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Individual insects flying in crowded assemblies perform complex aerial maneuvers by sensing and feeding back neighbor measurements to small changes in their wing motions. To understand the individual feedback rules that permit these fast, adaptive behaviors in group flight, both experimental preparations inducing crowded flight and high-speed tracking systems capable of tracking both body motions and more subtle wing motion changes for multiple insects in simultaneous flight are needed. This measurement capability extends tracking beyond the previous focus on individual insects to multiple insects. This paper describes an experimental preparation that induces crowded insect flight in more naturalistic conditions (a laboratory-outdoor transition tunnel) and directly compares the resulting flight performance to traditional flight enclosures. Measurements are made possible via the introduction of a multi-agent high speed insect tracker called Hi-VISTA, which provides a capability to track wing and body motions of multiple insects using high speed cameras (9000-12 500 fps). Processing steps consist of automatic background identification, data association, hull reconstruction, segmentation, and feature measurement. To improve the biological relevance of laboratory experiments and develop a platform for interaction studies, this paper applies the Hi-VISTA measurement system toApis melliferaforagers habituated to transit flights through the transparent transition environment. Binary statistical analysis (Welch's t-test, Cohen's d effect size) of 95 flight trajectories is presented, quantifying the differences between flights in an unobstructed environment and in a confined tunnel volume. The results indicate that body pitch angle, heading rate, flapping frequency, and vertical speed (heave) are each affected by confinement, and other flight variables show minor or statistically insignificant changes. These results form a baseline as swarm tracking and analysis begins to isolate the effects of neighbors from environmental enclosures, and improve the connection of high speed insect laboratory experiments to outdoor field experiments.
Collapse
Affiliation(s)
- Ishriak Ahmed
- Oklahoma State University, Stillwater, OK, United States of America
| | - Imraan A Faruque
- Oklahoma State University, Stillwater, OK, United States of America
| |
Collapse
|
9
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees land rapidly by intermittently accelerating and decelerating toward the surface during visually guided landings. iScience 2022; 25:104265. [PMID: 35521517 PMCID: PMC9065724 DOI: 10.1016/j.isci.2022.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Many flying animals parse visual information to control their landing, whereby they can decelerate smoothly by flying at a constant radial optic expansion rate. Here, we studied how bumblebees (Bombus terrestris) use optic expansion information to control their landing, by analyzing 10,005 landing maneuvers on vertical platforms with various optic information, and at three dim light conditions. We showed that bumblebees both decelerate and accelerate during these landings. Bumblebees decelerate by flying at a constant optic expansion rate, but they mostly accelerate toward the surface each time they switched to a new, often higher, optic expansion rate set-point. These transient acceleration phases allow bumblebees to increase their approach speed, and thereby land rapidly and robustly, even in dim twilight conditions. This helps explain why bumblebees are such robust foragers in challenging environmental conditions. The here-proposed sensorimotor landing control system can serve as bio-inspiration for landing control in unmanned aerial vehicles. Bumblebees land by intermittently decelerating and accelerating toward a surface Acceleration and deceleration phases result from a single visual-motor controller The accelerations toward the surface allow bees to maximize their landing speed Bumblebees adjust their sensorimotor control response to fly slower in dim light
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
10
|
Abstract
Insects have evolved sophisticated reflexes to right themselves in mid-air. Their recovery mechanisms involve complex interactions among the physical senses, muscles, body, and wings, and they must obey the laws of flight. We sought to understand the key mechanisms involved in dragonfly righting reflexes and to develop physics-based models for understanding the control strategies of flight maneuvers. Using kinematic analyses, physical modeling, and three-dimensional flight simulations, we found that a dragonfly uses left-right wing pitch asymmetry to roll its body 180 degrees to recover from falling upside down in ~200 milliseconds. Experiments of dragonflies with blocked vision further revealed that this rolling maneuver is initiated by their ocelli and compound eyes. These results suggest a pathway from the dragonfly's visual system to the muscles regulating wing pitch that underly the recovery. The methods developed here offer quantitative tools for inferring insects' internal actions from their acrobatics, and are applicable to a broad class of natural and robotic flying systems.
Collapse
Affiliation(s)
- Z Jane Wang
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA.,Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - James Melfi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anthony Leonardo
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
11
|
Ravi S, Siesenop T, Bertrand OJ, Li L, Doussot C, Fisher A, Warren WH, Egelhaaf M. Bumblebees display characteristics of active vision during robust obstacle avoidance flight. J Exp Biol 2022; 225:274096. [PMID: 35067721 PMCID: PMC8920035 DOI: 10.1242/jeb.243021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany,School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia,Author for correspondence ()
| | - Tim Siesenop
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Olivier J. Bertrand
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Liang Li
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - William H. Warren
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Martin Egelhaaf
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| |
Collapse
|
12
|
Tu Z, Fei F, Deng X. Bio-Inspired Rapid Escape and Tight Body Flip on an At-Scale Flapping Wing Hummingbird Robot Via Reinforcement Learning. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3064882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Chen Y, Xu S, Ren Z, Chirarattananon P. Collision Resilient Insect-Scale Soft-Actuated Aerial Robots With High Agility. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3053647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Cellini B, Salem W, Mongeau JM. Mechanisms of punctuated vision in fly flight. Curr Biol 2021; 31:4009-4024.e3. [PMID: 34329590 DOI: 10.1016/j.cub.2021.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
To guide locomotion, animals control gaze via movements of their eyes, head, and/or body, but how the nervous system controls gaze during complex motor tasks remains elusive. In many animals, shifts in gaze consist of periods of smooth movement punctuated by rapid eye saccades. Notably, eye movements are constrained by anatomical limits, which requires resetting eye position. By studying tethered, flying fruit flies (Drosophila), we show that flies perform stereotyped head saccades to reset gaze, analogous to optokinetic nystagmus in primates. Head-reset saccades interrupted head smooth movement for as little as 50 ms-representing less than 5% of the total flight time-thereby enabling punctuated gaze stabilization. By revealing the passive mechanics of the neck joint, we show that head-reset saccades leverage the neck's natural elastic recoil, enabling mechanically assisted redirection of gaze. The consistent head orientation at saccade initiation, the influence of the head's angular position on saccade rate, the decrease in wing saccade frequency in head-fixed flies, and the decrease in head-reset saccade rate in flies with their head range of motion restricted together implicate proprioception as the primary trigger of head-reset saccades. Wing-reset saccades were influenced by head orientation, establishing a causal link between neck sensory signals and the execution of body saccades. Head-reset saccades were abolished when flies switched to a landing state, demonstrating that head movements are gated by behavioral state. We propose a control architecture for active vision systems with limits in sensor range of motion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
How Was Nature Able to Discover Its Own Laws-Twice? Life (Basel) 2021; 11:life11070679. [PMID: 34357051 PMCID: PMC8305280 DOI: 10.3390/life11070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The central thesis of the modern scientific revolution is that nature is objective. Yet, somehow, out of that objective reality, projective systems emerged-cognitive and purposeful. More remarkably, through nature's objective laws, chemical systems emerged and evolved to take advantage of those laws. Even more inexplicably, nature uncovered those laws twice-once unconsciously, once consciously. Accordingly, one could rephrase the origin of life question as follows: how was nature able to become self-aware and discover its own laws? What is the law of nature that enabled nature to discover its own laws? Addressing these challenging questions in physical-chemical terms may be possible through the newly emergent field of systems chemistry.
Collapse
|
16
|
Kosaka T, Gan JH, Long LD, Umezu S, Sato H. Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. BIOINSPIRATION & BIOMIMETICS 2021; 16:036001. [PMID: 33513597 DOI: 10.1088/1748-3190/abe138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In the research and development of micro air vehicles, understanding and imitating the flight mechanism of insects presents a viable way of progressing forward. While research is being conducted on the flight mechanism of insects such as flies and dragonflies, research on beetles that can carry larger loads is limited. Here, we clarified the beetle midlegs' role in the attenuation and cessation of the wingbeat. We anatomically confirmed the connection between the midlegs and the elytra. We also further clarified which pair of legs are involved in the wingbeat attenuation mechanism, and lastly demonstrated free-flight control via remote leg muscle stimulation. Observation of multiple landings using a high-speed camera revealed that the wingbeat stopped immediately after their midlegs were lowered. Moreover, the action of lowering the midleg attenuated and often stopped the wingbeat. A miniature remote stimulation device (backpack) mountable on beetles was designed and utilized for the free-flight demonstration. Beetles in free flight were remotely induced into lowering (swing down) each leg pair via electrical stimulation, and they were found to lose significant altitude only when the midlegs were stimulated. Thus, the results of this study revealed that swinging down of the midlegs played a significant role in beetle wingbeat cessation. In the future, our findings on the wingbeat attenuation and cessation mechanism are expected to be helpful in designing bioinspired micro air vehicles.
Collapse
Affiliation(s)
- Takumi Kosaka
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Jia Hui Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Le Duc Long
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Smith NM, Balsalobre JB, Doshi M, Willenberg BJ, Dickerson AK. Landing mosquitoes bounce when engaging a substrate. Sci Rep 2020; 10:15744. [PMID: 32978447 PMCID: PMC7519040 DOI: 10.1038/s41598-020-72462-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
In this experimental study we film the landings of Aedes aegypti mosquitoes to characterize landing behaviors and kinetics, limitations, and the passive physiological mechanics they employ to land on a vertical surface. A typical landing involves 1-2 bounces, reducing inbound momentum by more than half before the mosquito firmly attaches to a surface. Mosquitoes initially approach landing surfaces at 0.1-0.6 m/s, decelerating to zero velocity in approximately 5 ms at accelerations as high as 5.5 gravities. Unlike Dipteran relatives, mosquitoes do not visibly prepare for landing with leg adjustments or body pitching. Instead mosquitoes rely on damping by deforming two forelimbs and buckling of the proboscis, which also serves to distribute the impact force, lessening the potential of detection by a mammalian host. The rebound response of a landing mosquito is well-characterized by a passive mass-spring-damper model which permits the calculation of force across impact velocity. The landing force of the average mosquito in our study is approximately 40 [Formula: see text]N corresponding to an impact velocity of 0.24 m/s. The substrate contact velocity which produces a force perceptible to humans, 0.42 m/s, is above 85% of experimentally observed landing speeds.
Collapse
Affiliation(s)
- Nicholas M Smith
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Jasmine B Balsalobre
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Mona Doshi
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Bradley J Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, USA
| | - Andrew K Dickerson
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA.
| |
Collapse
|
18
|
Tichit P, Alves-Dos-Santos I, Dacke M, Baird E. Accelerated landings in stingless bees are triggered by visual threshold cues. Biol Lett 2020; 16:20200437. [PMID: 32842893 DOI: 10.1098/rsbl.2020.0437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most flying animals rely primarily on visual cues to coordinate and control their trajectory when landing. Studies of visually guided landing typically involve animals that decrease their speed before touchdown. Here, we investigate the control strategy of the stingless bee Scaptotrigona depilis, which instead accelerates when landing on its narrow hive entrance. By presenting artificial targets that resemble the entrance at different locations on the hive, we show that these accelerated landings are triggered by visual cues. We also found that S. depilis initiated landing and extended their legs when the angular size of the target reached a given threshold. Regardless of target size, the magnitude of acceleration was the same and the bees aimed for the same relative position on the target suggesting that S. depilis use a computationally simple but elegant 'stereotyped' landing strategy that requires few visual cues.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of Biology, Lund University, Lund 223 62, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund 223 62, Sweden.,Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
19
|
Gu M, Wu J, Zhang Y. Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations. BIOINSPIRATION & BIOMIMETICS 2020; 15:056001. [PMID: 32470950 DOI: 10.1088/1748-3190/ab97fc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are the main source of inspiration for flapping-wing micro air vehicles (FWMAVs). They frequently encounter wind gust perturbations in natural environments, and effectively cope with these perturbations. Here, we investigated the rapid gust response of flies to instruct the gust stability design of FWMAVs. A novel method to produce impulsive wind gusts that lasted less than 30 ms was designed to observe flies' rapid responses. Headwind gust perturbations were imposed on 14 tethered fruit flies, and the corresponding wing motions during perturbations were recorded by three high-speed cameras. The numerical simulation method was then applied to analyze aerodynamic forces and moments induced by the changes in wing kinematics. Results shows that flies mainly utilize three strategies against headwind gust perturbations, including decreasing the magnitude of stroke positional angle at ventral stroke reversal, delayed rotation and making the deviation angles in upstroke and downstroke closer (i.e. the wing tip trajectories of upstroke and downstroke tend be closer). Consequently, flies resist increments in lift and drag induced by the headwind gusts. However, flies seem to care little about changes in pitch moment in tethered conditions. These results provide useful suggestions for the stability control of FWMAVs during headwind gust perturbations.
Collapse
Affiliation(s)
- Mancang Gu
- School of Transportation Science and Engineering, Beihang University, 100191 Beijing, People's Republic of China
| | | | | |
Collapse
|
20
|
Verbe A, Varennes LP, Vercher JL, Viollet S. How do hoverflies use their righting reflex? J Exp Biol 2020; 223:jeb215327. [PMID: 32527962 DOI: 10.1242/jeb.215327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/28/2020] [Indexed: 11/20/2022]
Abstract
When taking off from a sloping surface, flies have to reorient themselves dorsoventrally and stabilize their body by actively controlling their flapping wings. We have observed that righting is achieved solely by performing a rolling manoeuvre. How flies manage to do this has not yet been elucidated. It was observed here for the first time that hoverfly reorientation is entirely achieved within 6 wingbeats (48.8 ms) at angular roll velocities of up to 10×103 deg s-1 and that the onset of their head rotation consistently follows that of their body rotation after a time lag of 16 ms. The insects' body roll was found to be triggered by the asymmetric wing stroke amplitude, as expected. The righting process starts immediately with the first wingbeat and seems unlikely to depend on visual feedback. A dynamic model for the fly's righting reflex is presented, which accounts for the head/body movements and the time lag recorded in these experiments. This model consists of a closed-loop control of the body roll, combined with a feedforward control of the head/body angle. During the righting manoeuvre, a strong coupling seems to exist between the activation of the halteres (which measure the body's angular speed) and the gaze stabilization reflex. These findings again confirm the fundamental role played by the halteres in both body and head stabilization processes.
Collapse
Affiliation(s)
- Anna Verbe
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Léandre P Varennes
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Jean-Louis Vercher
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Stéphane Viollet
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| |
Collapse
|
21
|
Tichit P, Alves-Dos-Santos I, Dacke M, Baird E. Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion. Proc Biol Sci 2020; 287:20192720. [PMID: 32070252 DOI: 10.1098/rspb.2019.2720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To land, flying animals must simultaneously reduce speed and control their path to the target. While the control of approach speed has been studied in many different animals, little is known about the effect of target size on landing, particularly for small targets that require precise trajectory control. To begin to explore this, we recorded the stingless bees Scaptotrigona depilis landing on their natural hive entrance-a narrow wax tube built by the bees themselves. Rather than decelerating before touchdown as most animals do, S. depilis accelerates in preparation for its high precision landings on the narrow tube of wax. A simulation of traffic at the hive suggests that this counterintuitive landing strategy could confer a collective advantage to the colony by minimizing the risk of mid-air collisions and thus of traffic congestion. If the simulated size of the hive entrance increases and if traffic intensity decreases relative to the measured real-world values, 'accelerated landing' ceases to provide a clear benefit, suggesting that it is only a useful strategy when target cross-section is small and landing traffic is high. We discuss this strategy in the context of S. depilis' ecology and propose that it is an adaptive behaviour that benefits foraging and nest defence.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund 22362, Sweden.,Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|