1
|
Vierkant V, Xie X, Huang Z, He L, Bancroft E, Wang X, Nguyen T, Srinivasan R, Zhou Y, Wang J. Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39095328 DOI: 10.1111/acer.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. METHODS Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant self-administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. RESULTS We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. CONCLUSIONS Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.
Collapse
Affiliation(s)
- Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Eric Bancroft
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Tran Nguyen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
2
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
3
|
Vierkant V, Xie X, Huang Z, He L, Bancroft E, Wang X, Srinivisan R, Zhou Y, Wang J. Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597021. [PMID: 38853893 PMCID: PMC11160798 DOI: 10.1101/2024.06.02.597021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. Methods Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant-self administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. Results We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. Conclusions Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.
Collapse
|
4
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
6
|
Wang W, Xie X, Zhuang X, Huang Y, Tan T, Gangal H, Huang Z, Purvines W, Wang X, Stefanov A, Chen R, Rodriggs L, Chaiprasert A, Yu E, Vierkant V, Hook M, Huang Y, Darcq E, Wang J. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep 2023; 42:112089. [PMID: 36796365 PMCID: PMC10404641 DOI: 10.1016/j.celrep.2023.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Tao Tan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - William Purvines
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucas Rodriggs
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Anita Chaiprasert
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Emily Yu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Emmanuel Darcq
- Department of Psychiatry, University of Strasbourg, INSERM U1114, 67084 Strasbourg Cedex, France
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Murthy BKB, Somatakis S, Ulivi AF, Klimmt H, Castello-Waldow TP, Haynes N, Huettl RE, Chen A, Attardo A. Arc-driven mGRASP highlights CA1 to CA3 synaptic engrams. Front Behav Neurosci 2023; 16:1072571. [PMID: 36793796 PMCID: PMC9924068 DOI: 10.3389/fnbeh.2022.1072571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Subpopulations of neurons display increased activity during memory encoding and manipulating the activity of these neurons can induce artificial formation or erasure of memories. Thus, these neurons are thought to be cellular engrams. Moreover, correlated activity between pre- and postsynaptic engram neurons is thought to lead to strengthening of their synaptic connections, thus increasing the probability of neural activity patterns occurring during encoding to reoccur at recall. Therefore, synapses between engram neurons can also be considered as a substrate of memory, or a synaptic engram. One can label synaptic engrams by targeting two complementary, non-fluorescent, synapse-targeted GFP fragments separately to the pre- and postsynaptic compartment of engram neurons; the two GFP fragments reconstitute a fluorescent GFP at the synaptic cleft between the engram neurons, thereby highlighting synaptic engrams. In this work we explored a transsynaptic GFP reconstitution system (mGRASP) to label synaptic engrams between hippocampal CA1 and CA3 engram neurons identified by different Immediate-Early Genes: cFos and Arc. We characterized the expression of the cellular and synaptic labels of the mGRASP system upon exposure to a novel environment or learning of a hippocampal-dependent memory task. We found that mGRASP under the control of transgenic ArcCreERT2 labeled synaptic engrams more efficiently than when controlled by viral cFostTA, possibly due to differences in the genetic systems rather than the specific IEG promoters.
Collapse
Affiliation(s)
- B. K. B. Murthy
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - S. Somatakis
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. F. Ulivi
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - H. Klimmt
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | | | - N. Haynes
- Max Planck Institute of Psychiatry, Munich, Germany
| | - R. E. Huettl
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. Chen
- Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,Weizmann Institute of Science, Rehovot, Israel
| | - Alessio Attardo
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,*Correspondence: Alessio Attardo,
| |
Collapse
|
8
|
Ramsey LA, Koya E, van den Oever MC. Editorial: Neuronal ensembles and memory engrams: Cellular and molecular mechanisms. Front Behav Neurosci 2023; 17:1157414. [PMID: 36926583 PMCID: PMC10011704 DOI: 10.3389/fnbeh.2023.1157414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Leslie A Ramsey
- Behavioral Neuroscience Research Branch Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, United States
| | - Eisuke Koya
- School of Psychology, Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Körber C, Sommer WH. From ensembles to meta-ensembles: Specific reward encoding by correlated network activity. Front Behav Neurosci 2022; 16:977474. [PMID: 36177094 PMCID: PMC9513968 DOI: 10.3389/fnbeh.2022.977474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal ensembles are local, sparsely distributed populations of neurons that are reliably re-activated by a specific stimulus, context or task. Such discrete cell populations can be defined either functionally, by electrophysiological recordings or in vivo calcium imaging, or anatomically, using the expression of markers such as the immediate early gene cFos. A typical example of tasks that involve the formation of neuronal ensembles is reward learning, such as the cue-reward pairing during operant conditioning. These ensembles are re-activated during cue-presentation and increasing evidence suggests that this re-activation is the neurophysiological basis for the execution of reward-seeking behavior. Whilst the pursuit of rewards is a common daily activity, it is also related to the consumption of drugs, such as alcohol, and may result in problematic behaviors including addiction. Recent research has identified neuronal ensembles in several reward-related brain regions that control distinct aspects of a conditioned response, e.g., contextual information about the availability of a specific reward or the actions needed to retrieve this reward under the given circumstances. Here, we review studies using the activity marker cFos to identify and characterize neuronal ensembles related to alcohol and non-drug rewards with a special emphasis on the discrimination between different rewards by meta-ensembles, i.e., by dynamic co-activation of multiple ensembles across different brain areas.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Sommer
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Lesuis SL, Brosens N, Immerzeel N, van der Loo RJ, Mitrić M, Bielefeld P, Fitzsimons CP, Lucassen PJ, Kushner SA, van den Oever MC, Krugers HJ. Glucocorticoids Promote Fear Generalization by Increasing the Size of a Dentate Gyrus Engram Cell Population. Biol Psychiatry 2021; 90:494-504. [PMID: 34503674 DOI: 10.1016/j.biopsych.2021.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Traumatic experiences, such as conditioned threat, are coded as enduring memories that are frequently subject to generalization, which is characterized by (re-) expression of fear in safe environments. However, the neurobiological mechanisms underlying threat generalization after a traumatic experience and the role of stress hormones in this process remain poorly understood. METHODS We examined the influence of glucocorticoid hormones on the strength and specificity of conditioned fear memory at the level of sparsely distributed dentate gyrus (DG) engram cells in male mice. RESULTS We found that elevating glucocorticoid hormones after fear conditioning induces a generalized contextual fear response. This was accompanied by a selective and persistent increase in the excitability and number of activated DG granule cells. Selective chemogenetic suppression of these sparse cells in the DG prevented glucocorticoid-induced fear generalization and restored contextual memory specificity, while leaving expression of auditory fear memory unaffected. CONCLUSIONS These results implicate the sparse ensemble of DG engram cells as a critical cellular substrate underlying fear generalization induced by glucocorticoid stress hormones.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Niek Brosens
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Immerzeel
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Bielefeld
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Domi E, Xu L, Toivainen S, Nordeman A, Gobbo F, Venniro M, Shaham Y, Messing RO, Visser E, van den Oever MC, Holm L, Barbier E, Augier E, Heilig M. A neural substrate of compulsive alcohol use. SCIENCE ADVANCES 2021; 7:eabg9045. [PMID: 34407947 PMCID: PMC8373126 DOI: 10.1126/sciadv.abg9045] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Alcohol intake remains controlled in a majority of users but becomes "compulsive," i.e., continues despite adverse consequences, in a minority who develop alcohol addiction. Here, using a footshock-punished alcohol self-administration procedure, we screened a large population of outbred rats to identify those showing compulsivity operationalized as punishment-resistant self-administration. Using unsupervised clustering, we found that this behavior emerged as a stable trait in a subpopulation of rats and was associated with activity of a brain network that included central nucleus of the amygdala (CeA). Activity of PKCδ+ inhibitory neurons in the lateral subdivision of CeA (CeL) accounted for ~75% of variance in punishment-resistant alcohol taking. Activity-dependent tagging, followed by chemogenetic inhibition of neurons activated during punishment-resistant self-administration, suppressed alcohol taking, as did a virally mediated shRNA knockdown of PKCδ in CeA. These findings identify a previously unknown mechanism for a core element of alcohol addiction and point to a novel candidate therapeutic target.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden.
| | - Li Xu
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
- Psychosomatic Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sanne Toivainen
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Anton Nordeman
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch Intramural Research Program, National Institute on Drug Abuse (NIDA), NIH, Baltimore, MD 21224, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research and Departments of Neuroscience and Neurology, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping 581 85, Sweden
| |
Collapse
|
13
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
14
|
Rao-Ruiz P, Visser E, Mitrić M, Smit AB, van den Oever MC. A Synaptic Framework for the Persistence of Memory Engrams. Front Synaptic Neurosci 2021; 13:661476. [PMID: 33841124 PMCID: PMC8024575 DOI: 10.3389/fnsyn.2021.661476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
Collapse
Affiliation(s)
- Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|