1
|
Yang H, Zhou Y, Miao G, Rusz J, Yan X, Guzman F, Xu X, Xu X, Aoki T, Zeiger P, Zhu X, Wang W, Guo J, Wu R, Pan X. Phonon modes and electron-phonon coupling at the FeSe/SrTiO 3 interface. Nature 2024; 635:332-336. [PMID: 39478222 DOI: 10.1038/s41586-024-08118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
The remarkable increase in superconducting transition temperature (Tc) observed at the interface of one-unit-cell FeSe films on SrTiO3 substrates (1 uc FeSe/STO)1 has attracted considerable research into the interface effects2-6. Although this high Tc is thought to be associated with electron-phonon coupling (EPC)2, the microscopic coupling mechanism and its role in the superconductivity remain elusive. Here we use momentum-selective high-resolution electron energy loss spectroscopy to atomically resolve the phonons at the FeSe/STO interface. We uncover new optical phonon modes, coupling strongly with electrons, in the energy range of 75-99 meV. These modes are characterized by out-of-plane vibrations of oxygen atoms in the interfacial double-TiOx layer and the apical oxygens in STO. Our results also demonstrate that the EPC strength and superconducting gap of 1 uc FeSe/STO are closely related to the interlayer spacing between FeSe and the TiOx terminated STO. These findings shed light on the microscopic origin of the interfacial EPC and provide insights into achieving large and consistent Tc enhancement in FeSe/STO and potentially other superconducting systems.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
| | - Yinong Zhou
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Guangyao Miao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ján Rusz
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
| | - Francisco Guzman
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
| | - Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xianghan Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Toshihiro Aoki
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, USA
| | - Paul Zeiger
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Weihua Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Chen X, Yu T, Liu Y, Sun Y, Lei M, Guo N, Fan Y, Sun X, Zhang M, Alarab F, Strocov VN, Wang Y, Zhou T, Liu X, Lu F, Liu W, Xie Y, Peng R, Xu H, Feng D. Orientation-dependent electronic structure in interfacial superconductors LaAlO 3/KTaO 3. Nat Commun 2024; 15:7704. [PMID: 39231978 PMCID: PMC11374786 DOI: 10.1038/s41467-024-51969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Emergent superconductivity at the LaAlO3/KTaO3 interfaces exhibits a mysterious dependence on the KTaO3 crystallographic orientations. Here by soft X-ray angle-resolved photoemission spectroscopy, we directly resolve the electronic structure of the LaAlO3/KTaO3 interfacial superconductors and the non-superconducting counterpart. We find that the mobile electrons that contribute to the interfacial superconductivity show strong k⊥ dispersion. Comparing the superconducting and non-superconducting interfaces, the quasi-three-dimensional electron gas with over 5.5 nm spatial distribution ubiquitously exists and shows similar orbital occupations. The signature of electron-phonon coupling is observed and intriguingly dependent on the interfacial orientations. Remarkably, the stronger electron-phonon coupling signature correlates with the higher superconducting transition temperature. Our observations help scrutinize the theories on the orientation-dependent superconductivity and offer a plausible and straightforward explanation. The interfacial orientation effect that can modify the electron-phonon coupling strength over several nanometers sheds light on the applications of oxide interfaces in general.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Tianlun Yu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Yuan Liu
- School of Physics, Zhejiang University, Hangzhou, China
| | - Yanqiu Sun
- School of Physics, Zhejiang University, Hangzhou, China
| | - Minyinan Lei
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Nan Guo
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Yu Fan
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Xingtian Sun
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Meng Zhang
- School of Physics, Zhejiang University, Hangzhou, China
| | - Fatima Alarab
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Yilin Wang
- School of Future Technology and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Tao Zhou
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Xinyi Liu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Fanjin Lu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Weitao Liu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China
| | - Yanwu Xie
- School of Physics, Zhejiang University, Hangzhou, China.
| | - Rui Peng
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
| | - Haichao Xu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
| | - Donglai Feng
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, China.
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Shi R, Li Q, Xu X, Han B, Zhu R, Liu F, Qi R, Zhang X, Du J, Chen J, Yu D, Zhu X, Guo J, Gao P. Atomic-scale observation of localized phonons at FeSe/SrTiO 3 interface. Nat Commun 2024; 15:3418. [PMID: 38653990 DOI: 10.1038/s41467-024-47688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.
Collapse
Affiliation(s)
- Ruochen Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Qize Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ruixue Zhu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Fachen Liu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ruishi Qi
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Xiaowen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ji Chen
- Institute of Condensed Matter and Material Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Dapeng Yu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen, 518055, China
- Hefei National Laboratory, 230088, Hefei, China
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China.
- Hefei National Laboratory, 230088, Hefei, China.
| |
Collapse
|
4
|
Yang H, Zhou Y, Miao G, Xu X, Han X, Zhu XX, Guo J, Wu R, Pan X. Role of Substrate Phonon in the Electron-phonon Coupling at FeSe/SrTiO3 Interface. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1629-1630. [PMID: 37613836 DOI: 10.1093/micmic/ozad067.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Hongbin Yang
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
| | - Yinong Zhou
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Guangyao Miao
- Insititue of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Xu
- Insititue of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Han
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Xu Xuetao Zhu
- Insititue of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jiandong Guo
- Insititue of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Zakeri K, Rau D, Jandke J, Yang F, Wulfhekel W, Berthod C. Direct Probing of a Large Spin-Orbit Coupling in the FeSe Superconducting Monolayer on STO. ACS NANO 2023; 17:9575-9585. [PMID: 37155694 DOI: 10.1021/acsnano.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spin-orbit coupling (SOC) is a fundamental physical interaction, which describes how the electrons' spin couples to their orbital motion. It is the source of a vast variety of fascinating phenomena in nanostructures. Although in most theoretical descriptions of high-temperature superconductivity SOC has been neglected, including this interaction can, in principle, revise the microscopic picture. Here by preforming energy-, momentum-, and spin-resolved spectroscopy experiments we demonstrate that while probing the dynamic charge response of the FeSe monolayer on strontium titanate, a prototype two-dimensional high-temperature superconductor using electrons, the scattering cross-section is spin dependent. We unravel the origin of the observed phenomenon and show that SOC in this two-dimensional superconductor is strong. We anticipate that such a strong SOC can have several consequences on the electronic structures and may compete with other pairing scenarios and be crucial for the mechanism of superconductivity.
Collapse
Affiliation(s)
- Khalil Zakeri
- Heisenberg Spin-dynamics Group, Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Dominik Rau
- Heisenberg Spin-dynamics Group, Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Jasmin Jandke
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Fang Yang
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Wulf Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christophe Berthod
- Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Zhang W, Zhang ZM, Nie JH, Gong BC, Cai M, Liu K, Lu ZY, Fu YS. Spin-Resolved Imaging of Antiferromagnetic Order in Fe 4 Se 5 Ultrathin Films on SrTiO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209931. [PMID: 36790865 DOI: 10.1002/adma.202209931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Indexed: 05/12/2023]
Abstract
Unraveling the magnetic order in iron chalcogenides and pnictides at atomic scale is pivotal for understanding their unconventional superconducting pairing mechanism, but is experimentally challenging. Here, by utilizing spin-polarized scanning tunneling microscopy, real-space spin contrasts are successfully resolved to exhibit atomically unidirectional stripes in Fe4 Se5 ultrathin films, the plausible closely related compound of bulk FeSe with ordered Fe-vacancies, which are grown by molecular beam epitaxy. As is substantiated by the first-principles electronic structure calculations, the spin contrast originates from a pair-checkerboard antiferromagnetic ground state with in-plane magnetization, which is modulated by a spin-lattice coupling. These measurements further identify three types of nanoscale antiferromagnetic domains with distinguishable spin contrasts, which are subject to thermal fluctuations into short-ranged patches at elevated temperatures. This work provides promising opportunities in understanding the emergent magnetic order and the electronic phase diagram for FeSe-derived superconductors.
Collapse
Affiliation(s)
- Wenhao Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Mo Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin-Hua Nie
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ben-Chao Gong
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Min Cai
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Liu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Zhong-Yi Lu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Ying-Shuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Cai X, Li ZX, Yao H. Antiferromagnetism Induced by Bond Su-Schrieffer-Heeger Electron-Phonon Coupling: A Quantum Monte Carlo Study. PHYSICAL REVIEW LETTERS 2021; 127:247203. [PMID: 34951814 DOI: 10.1103/physrevlett.127.247203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Antiferromagnetism (AFM) such as Néel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Néel AFM ordering in two dimensions can be dominantly induced by electron-phonon couplings (EPC) has not been completely understood. Here, by employing numerically exact sign-problem-free quantum Monte Carlo (QMC) simulations, we show that bond Su-Schrieffer-Heeger (SSH) phonons with frequency ω and EPC constant λ can induce AFM ordering for a wide range of phonon frequency ω>ω_{c}. For ω<ω_{c}, a valence-bond-solid (VBS) order appears and there is a direct quantum phase transition between VBS and AFM phases at ω_{c}. The phonon mechanism of the AFM ordering is related to the fact that SSH phonons directly couple to electron hopping whose second-order process can induce an effective AFM spin exchange. Our results shall shed new light on understanding AFM ordering in correlated quantum materials.
Collapse
Affiliation(s)
- Xun Cai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Song Y, Chen Z, Zhang Q, Xu H, Lou X, Chen X, Xu X, Zhu X, Tao R, Yu T, Ru H, Wang Y, Zhang T, Guo J, Gu L, Xie Y, Peng R, Feng D. High temperature superconductivity at FeSe/LaFeO 3 interface. Nat Commun 2021; 12:5926. [PMID: 34635672 PMCID: PMC8505662 DOI: 10.1038/s41467-021-26201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Enormous enhancement of superconducting pairing temperature (Tg) to 65 K in FeSe/SrTiO3 has made it a spotlight. Despite the effort of interfacial engineering, FeSe interfaced with TiOx remains the unique case in hosting high Tg, hindering a decisive understanding on the general mechanism and ways to further improving Tg. Here we constructed a new high-Tg interface, single-layer FeSe interfaced with FeOx-terminated LaFeO3. Large superconducting gap and diamagnetic response evidence that the superconducting pairing can emerge near 80 K, highest amongst all-known interfacial superconductors. Combining various techniques, we reveal interfacial charge transfer and strong interfacial electron-phonon coupling (EPC) in FeSe/LaFeO3, showing that the cooperative pairing mechanism works beyond FeSe-TiOx. Intriguingly, the stronger interfacial EPC than that in FeSe/SrTiO3 is likely induced by the stronger interfacial bonding in FeSe/LaFeO3, and can explain the higher Tg according to recent theoretical calculations, pointing out a workable route in designing new interfaces to achieve higher Tg.
Collapse
Affiliation(s)
- Yuanhe Song
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Zheng Chen
- Department of Physics, Zhejiang University, 310027, Hangzhou, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Haichao Xu
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
| | - Xia Lou
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Xiaoyang Chen
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ran Tao
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Tianlun Yu
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Hao Ru
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
| | - Yihua Wang
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
| | - Tong Zhang
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Yanwu Xie
- Department of Physics, Zhejiang University, 310027, Hangzhou, China.
| | - Rui Peng
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 200438, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China.
| | - Donglai Feng
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China.
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China.
| |
Collapse
|
9
|
High-order replica bands in monolayer FeSe/SrTiO 3 revealed by polarization-dependent photoemission spectroscopy. Nat Commun 2021; 12:4573. [PMID: 34321473 PMCID: PMC8319137 DOI: 10.1038/s41467-021-24783-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of the enhanced superconductivity in monolayer FeSe/SrTiO3 has been enthusiastically studied and debated over the past decade. One specific observation has been taken to be of central importance: the replica bands in the photoemission spectrum. Although suggestive of electron-phonon interaction in the material, the essence of these spectroscopic features remains highly controversial. In this work, we conduct angle-resolved photoemission spectroscopy measurements on monolayer FeSe/SrTiO3 using linearly polarized photons. This configuration enables unambiguous characterization of the valence electronic structure with a suppression of the spectral background. We consistently observe high-order replica bands derived from various Fe 3d bands, similar to those observed on bare SrTiO3. The intensity of the replica bands is unexpectedly high and different between dxy and dyz bands. Our results provide new insights on the electronic structure of this high-temperature superconductor and the physical origin of the photoemission replica bands. The origin of the photoemission replica bands in monolayer FeSe/SrTiO3 remains controversial. Here, the authors perform angle-resolved photoemission spectroscopy with polarized photon on FeSe/SrTiO3 and observe high-order replica bands with high intensity from various Fe 3d bands, suggesting a mixed mechanism.
Collapse
|
10
|
Ren Z, Li H, Zhao H, Sharma S, Wang Z, Zeljkovic I. Nanoscale decoupling of electronic nematicity and structural anisotropy in FeSe thin films. Nat Commun 2021; 12:10. [PMID: 33397896 PMCID: PMC7782804 DOI: 10.1038/s41467-020-20150-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022] Open
Abstract
In a material prone to a nematic instability, anisotropic strain in principle provides a preferred symmetry-breaking direction for the electronic nematic state to follow. This is consistent with experimental observations, where electronic nematicity and structural anisotropy typically appear hand-in-hand. In this work, we discover that electronic nematicity can be locally decoupled from the underlying structural anisotropy in strain-engineered iron-selenide (FeSe) thin films. We use heteroepitaxial molecular beam epitaxy to grow FeSe with a nanoscale network of modulations that give rise to spatially varying strain. We map local anisotropic strain by analyzing scanning tunneling microscopy topographs, and visualize electronic nematic domains from concomitant spectroscopic maps. While the domains form so that the energy of nemato-elastic coupling is minimized, we observe distinct regions where electronic nematic ordering fails to flip direction, even though the underlying structural anisotropy is locally reversed. The findings point towards a nanometer-scale stiffness of the nematic order parameter.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Hong Li
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - He Zhao
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Shrinkhala Sharma
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Ilija Zeljkovic
- Department of Physics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|