1
|
Fan Y, Sun J, Fan W, Zhong X, Yin Z, Su B, Yao J, Hong X, Zhai J, Wang Z, Chen H, Guo F, Wen X, Ning C, Chen L, Yu P. Three-Dimensional Semiconductor Network as Regulators of Energy Metabolism Drives Angiogenesis in Bone Regeneration. ACS NANO 2024; 18:32602-32616. [PMID: 39530623 DOI: 10.1021/acsnano.4c09971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration. The three-dimensional heterojunction interfaces facilitate electron transfer and establish internal electric fields at the nanoscale interfaces. The 3D-NTBH was found to noticeably accelerate glycolysis in endothelial cells, thereby rapidly providing energy to support cellular metabolic activities and ultimately driving angiogenesis within the bone tissue. Molecular dynamic simulations have demonstrated that the 3D-NTBH facilitates the exposure of fibronectin's Arg-Gly-Asp peptide binding site, thereby regulating the glycolysis of endothelial cells. Further evidence suggests that 3D-NTBH promotes early vascular network reconstruction and bone regeneration in vivo. The findings of this research offer a promising research perspective for the design of vascularizing implants.
Collapse
Affiliation(s)
- Youzhun Fan
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Jiwei Sun
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wenjie Fan
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xianwei Zhong
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Zhaoyi Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yao
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xinyu Hong
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Zhengao Wang
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Haoyan Chen
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Fengyuan Guo
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| | - Lili Chen
- Department of Stomatology, School of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Peng Yu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Gao X, Dan Q, Zhang C, Ding R, Gao E, Luo H, Liu W, Lu C. Pentachloronitrobenzene disturbed murine ventricular wall development by inhibiting cardiomyocyte proliferation via Hec1 downregulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168917. [PMID: 38030013 DOI: 10.1016/j.scitotenv.2023.168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Exposure to the organochlorine fungicide pentachloronitrobenzene (PCNB) causes developmental abnormalities, including cardiac malformation. However, the molecular mechanism of PCNB cardiotoxicity remains elusive. We found that oral administration of PCNB to pregnant mice induced a hypoplastic wall with significant thinning of the compact myocardium in the developing hearts. PCNB significantly downregulates the expression of Hec1, a member of the NDC80 kinetochore complex, resulting in aberrant spindles, chromosome missegregation and an arrest in cardiomyocyte proliferation. Cardiac-specific ablation of Hec1 sharply inhibits cardiomyocyte proliferation, leading to thinning of the compact myocardium and embryonic lethality. Mechanistically, we found that activating transcription factor 3 (ATF3) transactivates Hec1 expression. Either HEC1 or ATF3 overexpression significantly rescues mitotic defects and restore the decreased proliferative ability of cardiomyocytes caused by PCNB exposure. Our findings highlight that maternal PCNB exposure disrupts embryonic cardiac function by inhibiting cardiomyocyte proliferation and interfering with ventricular wall development, partially attributed to the downregulation of the Atf3-Hec1 axis.
Collapse
Affiliation(s)
- Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruqian Ding
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lu X, Zhong L, Lindell E, Veanes M, Guo J, Zhao M, Salehi M, Swartling FJ, Chen X, Sjöblom T, Zhang X. Identification of ATF3 as a novel protective signature of quiescent colorectal tumor cells. Cell Death Dis 2023; 14:676. [PMID: 37833290 PMCID: PMC10576032 DOI: 10.1038/s41419-023-06204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death in the world. In most cases, drug resistance and tumor recurrence are ultimately inevitable. One obstacle is the presence of chemotherapy-insensitive quiescent cancer cells (QCCs). Identification of unique features of QCCs may facilitate the development of new targeted therapeutic strategies to eliminate tumor cells and thereby delay tumor recurrence. Here, using single-cell RNA sequencing, we classified proliferating and quiescent cancer cell populations in the human colorectal cancer spheroid model and identified ATF3 as a novel signature of QCCs that could support cells living in a metabolically restricted microenvironment. RNA velocity further showed a shift from the QCC group to the PCC group indicating the regenerative capacity of the QCCs. Our further results of epigenetic analysis, STING analysis, and evaluation of TCGA COAD datasets build a conclusion that ATF3 can interact with DDIT4 and TRIB3 at the transcriptional level. In addition, decreasing the expression level of ATF3 could enhance the efficacy of 5-FU on CRC MCTS models. In conclusion, ATF3 was identified as a novel marker of QCCs, and combining conventional drugs targeting PCCs with an option to target QCCs by reducing ATF3 expression levels may be a promising strategy for more efficient removal of tumor cells.
Collapse
Affiliation(s)
- Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lei Zhong
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, Sichuan, China
| | - Emma Lindell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Margus Veanes
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jing Guo
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maede Salehi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Ke H, Chen Z, Zhao X, Yang C, Luo T, Ou W, Wang L, Liu H. Research progress on activation transcription factor 3: A promising cardioprotective molecule. Life Sci 2023:121869. [PMID: 37355225 DOI: 10.1016/j.lfs.2023.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Activation transcription factor 3 (ATF3), a member of the ATF/cyclic adenosine monophosphate response element binding family, can be induced by a variety of stresses. Numerous studies have indicated that ATF3 plays multiple roles in the development and progression of cardiovascular diseases, including atherosclerosis, hypertrophy, fibrosis, myocardial ischemia-reperfusion, cardiomyopathy, and other cardiac dysfunctions. In past decades, ATF3 has been demonstrated to be detrimental to some cardiac diseases. Current studies have indicated that ATF3 can function as a cardioprotective molecule in antioxidative stress, lipid metabolic metabolism, energy metabolic regulation, and cell death modulation. To unveil the potential therapeutic role of ATF3 in cardiovascular diseases, we organized this review to explore the protective effects and mechanisms of ATF3 on cardiac dysfunction, which might provide rational evidence for the prevention and cure of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zexing Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuanbin Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chaobo Yang
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Wen Ou
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lizi Wang
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haiqiong Liu
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
5
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
6
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Zhang J, Wang W, Li P, Li Z, Hao L, Zhang X, Ru S. Bisphenol S induces cardiovascular toxicity by disturbing the development of the common cardinal vein and myocardial contractility in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106294. [PMID: 36116344 DOI: 10.1016/j.aquatox.2022.106294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely used as a substitute for bisphenol A in industrial manufacturing. However, the safety of BPS is controversial, and the mechanism by which BPS exerts cardiovascular toxicity remains unclear. In this study, zebrafish embryos, including wild-type zebrafish and transgenic (flk1:eGFP), (gata1:DsRed) and (cmlc2:eGFP) zebrafish at 2 h postfertilization (hpf), were exposed to BPS at concentrations of 1, 10 and 100 μg/L for 24, 48 and 72 h, respectively. The data showed that BPS accelerated the expansion of the common cardinal vein and inhibited lumen formation between 24 hpf and 72 hpf. Moreover, low-dose BPS disturbed cardiac muscle contraction by breaking the calcium balance in cardiac muscle cells according to the RNA-seq results. As a consequence, increased heart rate and irregular blood circulation were observed in the BPS treatment groups. This result suggested that BPS at environmental relevant concentrations caused cardiovascular toxicity during the development of zebrafish embryos, possibly being an important inducer of cardiovascular injury later in life. These findings provide insight into the rational and safe application of BPS.
Collapse
Affiliation(s)
- Jie Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peng Li
- Shandong Gold Group Co., Ltd, Jinan 250100, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
8
|
Renfro Z, White BE, Stephens KE. CCAAT enhancer binding protein gamma (C/EBP-γ): An understudied transcription factor. Adv Biol Regul 2022; 84:100861. [PMID: 35121409 PMCID: PMC9376885 DOI: 10.1016/j.jbior.2022.100861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.
Collapse
Affiliation(s)
- Zachary Renfro
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Bryan E White
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Kimberly E Stephens
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| |
Collapse
|
9
|
Cheng L, Xie M, Qiao W, Song Y, Zhang Y, Geng Y, Xu W, Wang L, Wang Z, Huang K, Dong N, Sun Y. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells. Commun Biol 2021; 4:1039. [PMID: 34489520 PMCID: PMC8421482 DOI: 10.1038/s42003-021-02571-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
The cardiac valvular endothelial cells (VECs) are an ideal cell source that could be used for making the valve organoids. However, few studies have been focused on the derivation of this important cell type. Here we describe a two-step chemically defined xeno-free method for generating VEC-like cells from human pluripotent stem cells (hPSCs). HPSCs were specified to KDR+/ISL1+ multipotent cardiac progenitors (CPCs), followed by differentiation into valve endothelial-like cells (VELs) via an intermediate endocardial cushion cell (ECC) type. Mechanistically, administration of TGFb1 and BMP4 may specify VEC fate by activating the NOTCH/WNT signaling pathways and previously unidentified targets such as ATF3 and KLF family of transcription factors. When seeded onto the surface of the de-cellularized porcine aortic valve (DCV) matrix scaffolds, hPSC-derived VELs exhibit superior proliferative and clonogenic potential than the primary VECs and human aortic endothelial cells (HAEC). Our results show that hPSC-derived valvular cells could be efficiently generated from hPSCs, which might be used as seed cells for construction of valve organoids or next generation tissue engineered heart valves. Cheng et al. provide a detailed characterization of the differentiation of human pluripotent stem cells to valve endothelial cells and their function. Their results show that the valve endothelial-like cells express key markers for valve endothelial cells, exhibiting proliferative and clonogenic potential.
Collapse
Affiliation(s)
- LinXi Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - MingHui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WeiHua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YanYong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - YingChao Geng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - WeiLin Xu
- Wuhan Textile University, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - NianGuo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - YuHua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|