1
|
Vora S, Andrew A, Kumar RP, Nazareth D, Bonfim-Melo A, Lim Y, Ong XY, Fernando M, He Y, Hooper JD, McMillan NA, Urosevic J, Travers J, Saeh J, Kumar S, Jones MJ, Gabrielli B. Aurora B inhibitors promote RB hypophosphorylation and senescence independent of p53-dependent CDK2/4 inhibition. Cell Death Dis 2024; 15:810. [PMID: 39521795 PMCID: PMC11550316 DOI: 10.1038/s41419-024-07204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Aurora B kinase (AURKB) inhibitors have been trialled in a range of different tumour types but are not approved for any indication. Expression of the human papilloma virus (HPV) oncogenes and loss of retinoblastoma (RB) protein function has been reported to increase sensitivity to AURKB inhibitors but the mechanism of their contribution to sensitivity is poorly understood. Two commonly reported outcomes of AURKB inhibition are polyploidy and senescence, although their relationship is unclear. Here we have investigated the major cellular targets of the HPV E6 and E7, p53 and RB, to determine their contribution to AURKB inhibitor induced polyploidy and senescence. We demonstrate that polyploidy is a universal feature of AURKB inhibitor treatment in all cell types including normal primary cells, but the subsequent outcomes are controlled by RB and p53. We demonstrate that p53 by regulating p21 expression is required for an initial cell cycle arrest by inhibiting both CDK2 and CDK4 activity, but this arrest is only triggered after cells have undergone two failed mitosis and cytokinesis. However, cells can enter senescence in the absence of p53. RB is essential for AURKB inhibitor-induced senescence. AURKB inhibitor induces rapid hypophosphorylation of RB independent of inhibition of CDK2 or CDK4 kinases and p53. This work demonstrates that p53 activation determines the timing of senescence onset, but RB is indispensable for senescence.
Collapse
Affiliation(s)
- Shivam Vora
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ariel Andrew
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Deborah Nazareth
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alexis Bonfim-Melo
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Xin Yee Ong
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Madushan Fernando
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Jelena Urosevic
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jon Travers
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jamal Saeh
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Mathew Jk Jones
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Tao L, Wang J, Wang K, Liu Q, Li H, Xu S, Gu C, Zhu Y. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 2024; 23:e14181. [PMID: 38689463 PMCID: PMC11320359 DOI: 10.1111/acel.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Postmenopausal osteoporosis is a prevalent metabolic bone disorder characterized by a decrease in bone mineral density and deterioration of bone microstructure. Despite the high prevalence of this disease, no effective treatment for osteoporosis has been developed. Exercise has long been considered a potent anabolic factor that promotes bone mass via upregulation of myokines secreted by skeletal muscle, exerting long-term osteoprotective effects and few side effects. Irisin was recently identified as a novel myokine that is significantly upregulated by exercise and could increase bone mass. However, the mechanisms underlying exercise-induced muscle-bone crosstalk remain unclear. Here, we identified that polyunsaturated fatty acids (arachidonic acid and docosahexaenoic acid) are increased in skeletal muscles following a 10-week treadmill exercise programme, which then promotes the expression and release of FNDC5/irisin. In osteoblasts, irisin binds directly to Cav1, which recruits and interacts with AMP-activated protein kinase α (AMPKα) to activate the AMPK pathway. Nrf2 is the downstream target of the AMPK pathway and increases the transcription of HMOX1 and Fpn. HMOX1 is involved in regulating the cell cycle and promotes the proliferation of osteoblasts. Moreover, upregulation of Fpn in osteoblasts enhanced iron removal, thereby suppressing ferroptosis in osteoblasts. Additionally, we confirmed that myotube-derived exosomes are involved in the transportation of irisin and enter osteoblasts through caveolae-mediated endocytosis. In conclusion, our findings highlight the crucial role of irisin, present in myotube-derived exosomes, as a crucial regulator of exercise-induced protective effects on bone, which provides novel insights into the mechanisms underlying exercise-dependent treatment of osteoporosis.
Collapse
Affiliation(s)
- Lin Tao
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Jinpeng Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Ke Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Qichang Liu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Hongyang Li
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Site Xu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Chunjian Gu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Yue Zhu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Kim D, Nam HJ, Baek SH. Post-translational modifications of lysine-specific demethylase 1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194968. [PMID: 37572976 DOI: 10.1016/j.bbagrm.2023.194968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Jin Nam
- Center for Rare Disease Therapeutic Technology, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Dong B, Song X, Wang X, Dai T, Wang J, Zhiyong Y, Deng J, Evers BM, Wu Y. FBXO24 Suppresses Breast Cancer Tumorigenesis by Targeting LSD1 for Ubiquitination. Mol Cancer Res 2023; 21:1303-1316. [PMID: 37540490 PMCID: PMC10840093 DOI: 10.1158/1541-7786.mcr-23-0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), a critical chromatin modulator, functions as an oncogene by demethylation of H3K4me1/2. The stability of LSD1 is governed by a complex and intricate process involving ubiquitination and deubiquitination. Several deubiquitinases preserve LSD1 protein levels. However, the precise mechanism underlying the degradation of LSD1, which could mitigate its oncogenic function, remains unknown. To gain a better understanding of LSD1 degradation, we conducted an unbiased siRNA screening targeting all the human SCF family E3 ligases. Our screening identified FBXO24 as a genuine E3 ligase that ubiquitinates and degrades LSD1. As a result, FBXO24 inhibits LSD1-induced tumorigenesis and functions as a tumor suppressor in breast cancer cells. Moreover, FBXO24 exhibits an inverse correlation with LSD1 and is associated with a favorable prognosis in breast cancer patient samples. Taken together, our study uncovers the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation. IMPLICATIONS Our study provides comprehensive characterization of the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Xiang Song
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Xinzhao Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Tao Dai
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Yu Zhiyong
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - B. Mark Evers
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
5
|
Valverde JM, Dubra G, Phillips M, Haider A, Elena-Real C, Fournet A, Alghoul E, Chahar D, Andrés-Sanchez N, Paloni M, Bernadó P, van Mierlo G, Vermeulen M, van den Toorn H, Heck AJR, Constantinou A, Barducci A, Ghosh K, Sibille N, Knipscheer P, Krasinska L, Fisher D, Altelaar M. A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation. Nat Commun 2023; 14:6316. [PMID: 37813838 PMCID: PMC10562473 DOI: 10.1038/s41467-023-42049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.
Collapse
Affiliation(s)
- Juan Manuel Valverde
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Geronimo Dubra
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
| | - Austin Haider
- Department of Molecular and Cellular Biophysics, University of Denver, 80208, Denver, Co, USA
| | | | - Aurélie Fournet
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Emile Alghoul
- IGH, CNRS, University of Montpellier, Montpellier, France
| | - Dhanvantri Chahar
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Nuria Andrés-Sanchez
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Matteo Paloni
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
| | - Pau Bernadó
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | | | | | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
- Department of Molecular and Cellular Biophysics, University of Denver, 80208, Denver, Co, USA
| | - Nathalie Sibille
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, 3584 CT, Netherlands
| | - Liliana Krasinska
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Daniel Fisher
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France.
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France.
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands.
| |
Collapse
|
6
|
Izzo A, Akol I, Villarreal A, Lebel S, Garcia-Miralles M, Cheffer A, Bovio P, Heidrich S, Vogel T. Nucleophosmin 1 cooperates with the methyltransferase DOT1L to preserve peri-nucleolar heterochromatin organization by regulating H3K27me3 levels and DNA repeats expression. Epigenetics Chromatin 2023; 16:36. [PMID: 37759327 PMCID: PMC10537513 DOI: 10.1186/s13072-023-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| | - Ipek Akol
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Alejandro Villarreal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
- Laboratorio de Neuropatología Molecular, Facultad de Medicina, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - Shannon Lebel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Marta Garcia-Miralles
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Arquimedes Cheffer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Qiu M, Yin Z, Wang H, Lei L, Li C, Cui Y, Dai R, Yang P, Xiang Y, Li Q, Lv J, Hu Z, Chen M, Zhou HB, Fang P, Xiao R, Liang K. CDK12 and Integrator-PP2A complex modulates LEO1 phosphorylation for processive transcription elongation. SCIENCE ADVANCES 2023; 9:eadf8698. [PMID: 37205756 DOI: 10.1126/sciadv.adf8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Cyclin-dependent kinase 12 (CDK12) interacts with cyclin K to form a functional nuclear kinase that promotes processive transcription elongation through phosphorylation of the C-terminal domain of RNA polymerase II (Pol II). To gain a comprehensive understanding of CDK12's cellular function, we used chemical genetic and phosphoproteomic screening to identify a landscape of nuclear human CDK12 substrates, including regulators of transcription, chromatin organization, and RNA splicing. We further validated LEO1, a subunit of the polymerase-associated factor 1 complex (PAF1C), as a bona fide cellular substrate of CDK12. Acute depletion of LEO1, or substituting LEO1 phosphorylation sites with alanine, attenuated PAF1C association with elongating Pol II and impaired processive transcription elongation. Moreover, we discovered that LEO1 interacts with and is dephosphorylated by the Integrator-PP2A complex (INTAC) and that INTAC depletion promotes the association of PAF1C with Pol II. Together, this study reveals an uncharacterized role for CDK12 and INTAC in regulating LEO1 phosphorylation, providing important insights into gene transcription and its regulation.
Collapse
Affiliation(s)
- Min Qiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lingyu Lei
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Conghui Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yali Cui
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Dai
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Peiyuan Yang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Xiang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Junhui Lv
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhuang Hu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Pingping Fang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiwei Liang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Kim J, Park EA, Shin MY, Park SJ. Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia. Microbiol Spectr 2023; 11:e0491922. [PMID: 36877015 PMCID: PMC10100927 DOI: 10.1128/spectrum.04919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2023] [Indexed: 03/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that control the eukaryotic cell cycle. Limited information is available on Giardia lamblia CDKs (GlCDKs), GlCDK1 and GlCDK2. After treatment with the CDK inhibitor flavopiridol-HCl (FH), division of Giardia trophozoites was transiently arrested at the G1/S phase and finally at the G2/M phase. The percentage of cells arrested during prophase or cytokinesis increased, whereas DNA synthesis was not affected by FH treatment. Morpholino-mediated depletion of GlCDK1 caused arrest at the G2/M phase, while GlCDK2 depletion resulted in an increase in the number of cells arrested at the G1/S phase and cells defective in mitosis and cytokinesis. Coimmunoprecipitation experiments with GlCDKs and the nine putative G. lamblia cyclins (Glcyclins) identified Glcyclins 3977/14488/17505 and 22394/6584 as cognate partners of GlCDK1 and GlCDK2, respectively. Morpholino-based knockdown of Glcyclin 3977 or 22394/6584 arrested cells in the G2/M phase or G1/S phase, respectively. Interestingly, GlCDK1- and Glcyclin 3977-depleted Giardia showed significant flagellar extension. Altogether, our results suggest that GlCDK1/Glcyclin 3977 plays an important role in the later stages of cell cycle control and in flagellar biogenesis. In contrast, GlCDK2 along with Glcyclin 22394 and 6584 functions from the early stages of the Giardia cell cycle. IMPORTANCE Giardia lamblia CDKs (GlCDKs) and their cognate cyclins have not yet been studied. In this study, the functional roles of GlCDK1 and GlCDK2 were distinguished using morpholino-mediated knockdown and coimmunoprecipitation. GlCDK1 with Glcyclin 3977 plays a role in flagellum formation as well as cell cycle control of G. lamblia, whereas GlCDK2 with Glcyclin 22394/6584 is involved in cell cycle control.
Collapse
Affiliation(s)
- Juri Kim
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Ah Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Mee Young Shin
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon-Jung Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int J Mol Sci 2023; 24:2848. [PMID: 36769170 PMCID: PMC9917736 DOI: 10.3390/ijms24032848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development. Manny studies have reported the key roles of Cyclins and CDKs in the development and progression of the disease in either in vitro cell culture studies or in vivo models. We aimed to compile the evidence of molecules acting as regulators of both Cyclins and CDKs, i.e., upstream regulators either activating or inhibiting Cyclins and CDKs. The review entails an introduction to gastric cancer, along with an overview of the involvement of cell cycle regulation and focused on the regulation of various Cyclins and CDKs in gastric cancer. It can act as an extensive resource for developing new hypotheses for future studies.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Mahdieh Yarmohammadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 33817-74895, Iran
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| |
Collapse
|
13
|
Palmer N, Talib SZA, Goh CMF, Biswas K, Sharan SK, Kaldis P. Identification PMS1 and PMS2 as potential meiotic substrates of CDK2 activity. PLoS One 2023; 18:e0283590. [PMID: 36952545 PMCID: PMC10035876 DOI: 10.1371/journal.pone.0283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department Biologie II, Biozentrum der LMU München, Zell- und Entwicklungsbiologie, Planegg-Martinsried, Germany
| | - Christine M F Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
14
|
Krasinska L, Fisher D. A Mechanistic Model for Cell Cycle Control in Which CDKs Act as Switches of Disordered Protein Phase Separation. Cells 2022; 11:cells11142189. [PMID: 35883632 PMCID: PMC9321858 DOI: 10.3390/cells11142189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are presumed to control the cell cycle by phosphorylating a large number of proteins involved in S-phase and mitosis, two mechanistically disparate biological processes. While the traditional qualitative model of CDK-mediated cell cycle control relies on differences in inherent substrate specificity between distinct CDK-cyclin complexes, they are largely dispensable according to the opposing quantitative model, which states that changes in the overall CDK activity level promote orderly progression through S-phase and mitosis. However, a mechanistic explanation for how such an activity can simultaneously regulate many distinct proteins is lacking. New evidence suggests that the CDK-dependent phosphorylation of ostensibly very diverse proteins might be achieved due to underlying similarity of phosphorylation sites and of the biochemical effects of their phosphorylation: they are preferentially located within intrinsically disordered regions of proteins that are components of membraneless organelles, and they regulate phase separation. Here, we review this evidence and suggest a mechanism for how a single enzyme’s activity can generate the dynamics required to remodel the cell at mitosis.
Collapse
|
15
|
Witkiewicz AK, Kumarasamy V, Sanidas I, Knudsen ES. Cancer cell cycle dystopia: heterogeneity, plasticity, and therapy. Trends Cancer 2022; 8:711-725. [PMID: 35599231 PMCID: PMC9388619 DOI: 10.1016/j.trecan.2022.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Ioannis Sanidas
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Elbæk CR, Petrosius V, Benada J, Erichsen L, Damgaard RB, Sørensen CS. WEE1 kinase protects the stability of stalled DNA replication forks by limiting CDK2 activity. Cell Rep 2022; 38:110261. [PMID: 35045293 DOI: 10.1016/j.celrep.2021.110261] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cellular feedback systems ensure genome maintenance during DNA replication. When replication forks stall, newly replicated DNA is protected by pathways that limit excessive DNA nuclease attacks. Here we show that WEE1 activity guards against nascent DNA degradation at stalled forks. Furthermore, we identify WEE1-dependent suppression of cyclin-dependent kinase 2 (CDK2) as a major activity counteracting fork degradation. We establish DNA2 as the nuclease responsible for excessive fork degradation in WEE1-inhibited cells. In addition, WEE1 appears to be unique among CDK activity suppressors in S phase because neither CHK1 nor p21 promote fork protection as WEE1 does. Our results identify a key role of WEE1 in protecting stalled forks, which is separate from its established role in safeguarding DNA replication initiation. Our findings highlight how WEE1 inhibition evokes massive genome challenges during DNA replication, and this knowledge may improve therapeutic strategies to specifically eradicate cancer cells that frequently harbor elevated DNA replication stress.
Collapse
Affiliation(s)
- Camilla Reiter Elbæk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby 2800, Denmark
| | - Valdemaras Petrosius
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Jan Benada
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Louisa Erichsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby 2800, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark.
| |
Collapse
|
17
|
Zabnenkova V, Shchagina O, Makienko O, Matyushchenko G, Ryzhkova O. Novel Compound Heterozygous Variants in the CDC6 Gene in a Russian Patient with Meier-Gorlin Syndrome. Appl Clin Genet 2022; 15:1-10. [PMID: 35023948 PMCID: PMC8747802 DOI: 10.2147/tacg.s342804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Meier-Gorlin syndrome (MGS) is a rare genetic syndrome inherited in an autosomal dominant or autosomal recessive manner. The disorder is characterized by bilateral microtia, absence or hypoplasia of the patella, and an intrauterine growth retardation as well as a number of other characteristic features. The cause of the disease is mutations in genes encoding proteins involved in the regulation of the cell cycle (ORC1, ORC4, ORC6, CDT1, CDC6, GMNN, CDC45L, MCM3, MCM5, MCM7, GINS2, and DONSON). Meier-Gorlin syndrome 5 due to mutations in the CDC6 gene is difficult to diagnose, and few clinical data have been described to date. Only one patient (male) with a missense mutation in a homozygous state has been previously reported. This report describes a new clinical case of Meier-Gorlin syndrome 5. This is also the first report of a Russian patient with Meier-Gorlin syndrome. Case Presentation The patient, a female, had extremely low physical development, neonatal progeroid appearance, lipodystrophy, thin skin, partial alopecia, cyanosis of the face, triangular face, microgenia, arachnodactyly, delayed bone age, hepatomegaly, hypoplasia of the labia majora, and hypertrophy of the clitoris in addition to known clinical signs. Differential diagnosis was performed with chromosomal abnormalities and Hutchinson-Gilford progeria. According to the results of sequencing of the clinical exome, the patient had two previously undescribed variants in the CDC6 gene, c.230A>G (p.(Lys77Arg)) and c.232C>T (p.(Gln78Ter)), NM_001254.3, in a compound heterozygous state. Conclusion This case allows us to learn more about the clinical features and nature of MGS 5 and improve the speed of diagnostics and quality of genetic counseling for such families.
Collapse
Affiliation(s)
- Viktoriia Zabnenkova
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Olga Shchagina
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Olga Makienko
- Counselling Unit, Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Galina Matyushchenko
- Counselling Unit, Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| | - Oxana Ryzhkova
- Molecular Genetics Laboratory № 3 The Shared Resource Centre "Genome", Federal State Budgetary Scientific Institution Research Centre for Medical Genetics named after Academician N.P. Bochkov, Moscow, Russian Federation
| |
Collapse
|
18
|
Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, Björklund M, Ouyang H. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med 2022; 7:e10250. [PMID: 35111950 PMCID: PMC8780934 DOI: 10.1002/btm2.10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.
Collapse
Affiliation(s)
- Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Zongsheng Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Mikael Björklund
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- Department of Sports MedicineZhejiang University School of MedicineHangzhouChina
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
19
|
Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front Cell Dev Biol 2021; 9:774845. [PMID: 34901021 PMCID: PMC8652076 DOI: 10.3389/fcell.2021.774845] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.
Collapse
Affiliation(s)
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers (Basel) 2021; 13:5506. [PMID: 34771669 PMCID: PMC8583118 DOI: 10.3390/cancers13215506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
The cyclin-dependent kinase (CDK) family of proteins play prominent roles in transcription, mRNA processing, and cell cycle regulation, making them attractive cancer targets. Palbociclib was the first FDA-approved CDK inhibitor that non-selectively targets the ATP binding sites of CDK4 and CDK6. In this review, we will briefly inventory CDK inhibitors that are either part of over 30 active clinical trials or recruiting patients. The lack of selectivity among CDKs and dose-limiting toxicities are major challenges associated with the development of CDK inhibitors. Proteolysis Targeting Chimeras (PROTACs) and Molecular Glues have emerged as alternative therapeutic modalities to target proteins. PROTACs and Molecular glues utilize the cellular protein degradation machinery to destroy the target protein. PROTACs are heterobifunctional molecules that form a ternary complex with the target protein and E3-ligase by making two distinct small molecule-protein interactions. On the other hand, Molecular glues function by converting the target protein into a "neo-substrate" for an E3 ligase. Unlike small molecule inhibitors, preclinical studies with CDK targeted PROTACs have exhibited improved CDK selectivity. Moreover, the efficacy of PROTACs and molecular glues are not tied to the dose of these molecular entities but to the formation of the ternary complex. Here, we provide an overview of PROTACs and molecular glues that modulate CDK function as emerging therapeutic modalities.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA;
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Lidia Boghean
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
- Pharmaceutical Sciences and University of Nebraska Medical Center, Omaha, NE 68198, USA
- Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Chu C, Geng Y, Zhou Y, Sicinski P. Cyclin E in normal physiology and disease states. Trends Cell Biol 2021; 31:732-746. [PMID: 34052101 DOI: 10.1016/j.tcb.2021.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023]
Abstract
E-type cyclins, collectively called cyclin E, represent key components of the core cell cycle machinery. In mammalian cells, two E-type cyclins, E1 and E2, activate cyclin-dependent kinase 2 (CDK2) and drive cell cycle progression by phosphorylating several cellular proteins. Abnormally elevated activity of cyclin E-CDK2 has been documented in many human tumor types. Moreover, cyclin E overexpression mediates resistance of tumor cells to various therapeutic agents. Recent work has revealed that the role of cyclin E extends well beyond cell proliferation and tumorigenesis, and it may regulate a diverse array of physiological and pathological processes. In this review, we discuss these various cyclin E functions and the potential for therapeutic targeting of cyclin E and cyclin E-CDK2 kinase.
Collapse
Affiliation(s)
- Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|