1
|
Siekhaus DE, Stanley-Ahmed JA. Discovering mechanisms of macrophage tissue infiltration with Drosophila. Curr Opin Immunol 2024; 91:102502. [PMID: 39536472 DOI: 10.1016/j.coi.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages' and monocytes' ability to invade into the tissues where they carry out these functions. Drosophila plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.
Collapse
Affiliation(s)
- Daria E Siekhaus
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA.
| | - Jasmine A Stanley-Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA; Centre for Mechanobiochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
2
|
Qin C, Feng Y, Yin Z, Wang C, Yin R, Li Y, Chen K, Tao T, Zhang K, Jiang Y, Gui J. The PIEZO1/miR-155-5p/GDF6/SMAD2/3 signaling axis is involved in inducing the occurrence and progression of osteoarthritis under excessive mechanical stress. Cell Signal 2024; 118:111142. [PMID: 38508350 DOI: 10.1016/j.cellsig.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To elucidate the molecular mechanism of overloading-induced osteoarthritis (OA) and to find a novel therapeutic target. METHODS We utilized human cartilage specimens, mouse chondrocytes, a destabilization of the medial meniscus (DMM) mouse model, and a mouse hindlimb weight-bearing model to validate the role of overloading on chondrocyte senescence and OA development. Then, we observed the effect of PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling axis on the preservation of joint metabolic homeostasis under overloading in vivo, in vitro and ex vivo by qPCR, Western blot, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, immunofluorescence, SA-β-gal staining, CCK8 assay, et al. Finally, we verified the therapeutic effects of intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 on the murine overloading-induced OA models. RESULTS Chondrocytes sensesed the mechanical overloading through PIEZO1 and up-regulated miR-155-5p expression. MiR-155-5p mimics could copy the effects of overloading-induced chondrocyte senescence and OA. Additionally, miR-155-5p could suppress the mRNA expression of Gdf6-Smad2/3 in various tissues within the joint. Overloading could disrupt joint metabolic homeostasis by downregulating the expression of anabolism indicators and upregulating the expression of catabolism indicators in the chondrocytes and synoviocytes, while miR-155-5p inhibition or GDF6 supplementation could exert an antagonistic effect by preserving the joint homeostasis. Finally, in the in vivo overloading models, intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 could significantly mitigate the severity of impending OA and lessened the progression of existing OA. CONCLUSION GDF6 overexpression or miR-155-5p inhibition could attenuate overloading-induced chondrocyte senescence and OA through the PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling pathway. Our study provides a new therapeutic target for the treatment of overloading-induced OA.
Collapse
Affiliation(s)
- Chaoren Qin
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yan Feng
- Nanjing First Hospital, Nanjing Medical University, China
| | - Zhaowei Yin
- Nanjing First Hospital, Nanjing Medical University, China
| | | | - Rui Yin
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yang Li
- Nanjing First Hospital, Nanjing Medical University, China
| | - Kai Chen
- Nanjing First Hospital, Nanjing Medical University, China
| | - Tianqi Tao
- Nanjing First Hospital, Nanjing Medical University, China
| | - Kaibin Zhang
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yiqiu Jiang
- Nanjing First Hospital, Nanjing Medical University, China
| | - Jianchao Gui
- Nanjing First Hospital, Nanjing Medical University, China..
| |
Collapse
|
3
|
Pho M, Berrada Y, Gunda A, Lavallee A, Chiu K, Padam A, Currey ML, Stephens AD. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Mol Biol Cell 2024; 35:ar19. [PMID: 38088876 PMCID: PMC10881147 DOI: 10.1091/mbc.e23-07-0292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
The nucleus is a mechanically stable compartment of the cell that contains the genome and performs many essential functions. Nuclear mechanical components chromatin and lamins maintain nuclear shape, compartmentalization, and function by resisting antagonistic actin contraction and confinement. Studies have yet to compare chromatin and lamins perturbations side-by-side as well as modulated actin contraction while holding confinement constant. To accomplish this, we used nuclear localization signal green fluorescent protein to measure nuclear shape and rupture in live cells with chromatin and lamin perturbations. We then modulated actin contraction while maintaining actin confinement measured by nuclear height. Wild type, chromatin decompaction, and lamin B1 null present bleb-based nuclear deformations and ruptures dependent on actin contraction and independent of actin confinement. Actin contraction inhibition by Y27632 decreased nuclear blebbing and ruptures while activation by CN03 increased rupture frequency. Lamin A/C null results in overall abnormal shape also reliant on actin contraction, but similar blebs and ruptures as wild type. Increased DNA damage is caused by nuclear blebbing or abnormal shape which can be relieved by inhibition of actin contraction which rescues nuclear shape and decreases DNA damage levels in all perturbations. Thus, actin contraction drives nuclear blebbing, bleb-based ruptures, and abnormal shape independent of changes in actin confinement.
Collapse
Affiliation(s)
- Mai Pho
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Aachal Gunda
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Anya Lavallee
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Arimita Padam
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Marilena L. Currey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
4
|
Zhao W, Li Y, Cheng X, Wei H, Li P, Fan L, Liu K, Zhang S, Wang H. The antioxidant Glycitin protects against intervertebral disc degeneration through antagonizing inflammation and oxidative stress in nucleus pulposus cells. Aging (Albany NY) 2023; 15:13693-13709. [PMID: 38019477 PMCID: PMC10756108 DOI: 10.18632/aging.205251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a kind of typical degenerative disorder of the skeletal muscle system caused by many factors including aging, abnormal mechanical stress and inflammatory responses. Glycitin is a natural isoflavone extracted from legumes. Previous studies have found that it is anti-inflammatory and promotes wound repair. However, the role of Glycitin in IVDD has not been elucidated. In the present research, we were surprised that Glycitin antagonized the NF-κB pathway activity. In addition, we also found that Glycitin alleviated TNF-α-induced metabolic disorders, extracellular matrix degradation, oxidative stress, inflammation responses, and mitochondrial damage. Furthermore, in in vivo experimental study, we discovered Glycitin attenuated IVDD. The results revealed that Glycitin alleviated the degenerative phenotype of IVDD. According to this research, Glycitin has anti-inflammatory properties that might exert a protective function in IVDD, suggesting a prospective therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yanpei Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xiang Cheng
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Peng Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Lixia Fan
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Shuai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Hao Wang
- Department of Trauma Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
5
|
Xie W, Xing Y, Xiao L, Zhang P, Oh R, Zhang Y, Yu X, He Y, Oh EG, Cao R, Ramasubramanian MK, Wang Y, Jin L, Oberhozler J, Li X. Intervertebral Disc-on-a-Chip MF: A New Model for Mouse Disc Culture via Integrating Mechanical Loading and Dynamic Media Flow. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300606. [PMID: 39130370 PMCID: PMC11315454 DOI: 10.1002/admt.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/13/2024]
Abstract
This study aims to develop an ex vivo organ-on-a-chip model, intervertebral Disc-on-a-ChipMF, to investigate integrated effects of mechanical loading and nutrition on disc health. The system consists of a detachable multilayer microfluidic chip, a Computer-Arduino-based control system, and a mechanical loading unit, which were optimized for accurate axial force measurement and the maintenance of a 21-day ex vivo disc culture. To ensure accuracy of axial force, we optimized the axial mechanical loading regimen, used the Computer-Arduino-based system and low-profile force sensors (LPFS) to control the mechanical loading unit, and modeled the force distribution by using computational simulation. A 21-day ex vivo disc culture was demonstrated using the Disc-on-a-ChipMF system, with optimized mechanical loading (0.02 MPa at 1Hz, 1.5 hr/day) and flow rate (1 μL/min). The structural integrity, collagen breakdown, catabolic enzyme activities, and disc cell and collagen alignment revealed that the on-chip cultured discs exhibited a preferred disc health similar to that of native discs for up to 21 days, while discs in a static culture showed detrimental degenerative changes. The mouse Disc-on-a-ChipMF system mimics in vivo disc microenvironment and provides a valuable platform for studying the effects of various factors on disc health and degeneration and testing new therapies.
Collapse
Affiliation(s)
- Wanqing Xie
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuan Xing
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Pu Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904, USA
| | - Richard Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yangpu Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Current address: Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Yu
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Yi He
- Department of Surgery, University of Virginia, 345 Cripell Drive, Charlottesville, VA 22908, USA
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruofan Cao
- Department of BioMolecular Science, University of Mississippi, Oxford, MS 38677, USA
| | - Melur K Ramasubramanian
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904, USA
| | - Yong Wang
- Department of Visceral Surgery and Transplantation, University of Zurich Hospital, 8091 Zürich, Switzerland
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jose Oberhozler
- Department of Visceral Surgery and Transplantation, University of Zurich Hospital, 8091 Zürich, Switzerland
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
6
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Shi K, Liang C, Huang X, Wang S, Chen J, Cheng F, Wang C, Ying L, Pan Z, Zhang Y, Shu J, Yang B, Wang J, Xia K, Zhou X, Li H, Li F, Tao Y, Chen Q. Collagen Niches Affect Direct Transcriptional Conversion toward Human Nucleus Pulposus Cells via Actomyosin Contractility. Adv Healthc Mater 2023; 12:e2201824. [PMID: 36165230 DOI: 10.1002/adhm.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Cellular niches play fundamental roles in regulating cellular behaviors. However, the effect of niches on direct converted cells remains unexplored. In the present study, the specific combination of transcription factors is first identified to directly acquire induced nucleus pulposus-like cells (iNPLCs). Next, tunable physical properties of collagen niches are fabricated based on various crosslinking degrees. Collagen niches significantly affect actomyosin cytoskeleton and then influence the maturation of iNPLCs. Using gain- and loss of function approaches, the appropriate physical states of collagen niches are found to significantly enhance the maturation of iNPLCs through actomyosin contractility. Moreover, in a rat model of degenerative disc diseases, iNPLCs with collagen niches are transplanted into the lesion to achieve significant improvements. As a result, overexpression of transcription factors in human dermal fibroblasts are efficiently converted into iNPLCs and the optimal collagen niches affect cellular cytoskeleton and then facilitate iNPLCs maturation toward human nucleus pulposus cells. These findings encourage more in-depth studies toward the interactions of niches and direct conversion, which would contribute to the development of direct conversion.
Collapse
Affiliation(s)
- Kesi Shi
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Shaoke Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Feng Cheng
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Liwei Ying
- Department of Orthopedics Surgery, Taizhou Hospital Affiliated of Wenzhou Medical University, Linhai, Zhejiang Province, 317000, P. R. China
| | - Zhaoqi Pan
- The School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Yuang Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiawei Shu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Biao Yang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaishun Xia
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hao Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
8
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Naringin protects human nucleus pulposus cells against TNF-α-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7655142. [PMID: 35265264 PMCID: PMC8898769 DOI: 10.1155/2022/7655142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Activation of the proinflammatory-associated cytokine, tumor necrosis factor-α (TNF-α), in nucleus pulposus (NP) cells is essential for the pathogenesis of intervertebral disc degeneration (IDD). Restoring autophagic flux has been shown to effectively protect against IDD and is a potential target for treatment. The goal of this study was to explore particular autophagic signalings responsible for the protective effects of naringin, a known autophagy activator, on human NP cells. The results showed that significantly increased autophagic flux was observed in NP cells treated with naringin, with pronounced decreases in the inflammatory response and oxidative stress, which rescued the disturbed cellular homeostasis induced by TNF-α activation. Autophagic flux inhibition was detectable in NP cells cotreated with 3-methyladenine (3-MA, an autophagy inhibitor), partially offsetting naringin-induced beneficial effects. Naringin promoted the expressions of autophagy-associated markers via SIRT1 (silent information regulator-1) activation by AMPK (AMP-activated protein kinase) phosphorylation. Either AMPK inhibition by BML-275 or SIRT1 silencing partially counteracted naringin-induced autophagic flux enhancement. These findings indicate that naringin boosts autophagic flux through SIRT1 upregulation via AMPK activation, thus protecting NP cells against inflammatory response, oxidative stress, and impaired cellular homeostasis. Naringin can be a promising inducer of restoration autophagic flux restoration for IDD.
Collapse
|
11
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
12
|
Huang Y, Yang J, Liu X, Wang X, Zhu K, Ling Z, Zeng B, Chen N, Liu S, Wei F. Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Front Cell Dev Biol 2022; 9:837777. [PMID: 35111765 PMCID: PMC8802762 DOI: 10.3389/fcell.2021.837777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhu
- Orthopaedic Section II, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baozhu Zeng
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ningning Chen
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Mainardi A, Cambria E, Occhetta P, Martin I, Barbero A, Schären S, Mehrkens A, Krupkova O. Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front Bioeng Biotechnol 2022; 9:826867. [PMID: 35155416 PMCID: PMC8832503 DOI: 10.3389/fbioe.2021.826867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.
Collapse
Affiliation(s)
- Andrea Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Arne Mehrkens
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
- Lepage Research Institute, University of Prešov, Prešov, Slovakia
| |
Collapse
|
14
|
Upenieks A, Montgomery-Song A, Santerre JP, Kandel RA. Development of a Perfusion Reactor for Intervertebral Disk Regeneration. Tissue Eng Part C Methods 2022; 28:12-22. [PMID: 35018812 DOI: 10.1089/ten.tec.2021.0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A tissue-engineered biological disk replacement has been proposed as a promising approach for the treatment of degenerative disk disease. A perfusion bioreactor would be a logical consideration to facilitate this scale-up as such reactors have been shown to improve nutrient delivery and provide beneficial mechanical forces that support the cultivation of large three-dimensional constructs. It was hypothesized that perfusion culture of tissue-engineered intervertebral disk (IVD) tissues would be capable of generating outer annulus fibrosus (oAF) and nucleus pulposus (NP) tissues comparable with established spinner reactor or static cultures, respectively, without compromising cellular viability, nutrient delivery, and tissue formation. In this study, the perfusion grown oAF and NP tissues did not show a significant difference in extracellular matrix (ECM) quantity or cellular phenotype when compared with their control conditions. In addition, they maintained cellular viability at the center core of the tissues and received enhanced diffusion of medium throughout the tissue when compared with static conditions. This study lays the groundwork for future studies to grow an entire IVD tissue to a physiologically relevant size.
Collapse
Affiliation(s)
- Alexander Upenieks
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada
| | - Aaryn Montgomery-Song
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, and Toronto, Ontario, Canada
| | - John Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Translational Biology and Engineering Program and Faculty of Dentistry, Toronto, Ontario, Canada
| | - Rita A Kandel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, and Toronto, Ontario, Canada
| |
Collapse
|
15
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
He S, Fu Y, Yan B, Tan H, Li H, Li J, Huang D, Huang Z, Lai J, Feng H, Sun Z, Lan Z. Curcumol Alleviates the Inflammation of Nucleus Pulposus Cells via the PI3K/Akt/NF-κB Signaling Pathway and Delays Intervertebral Disk Degeneration. World Neurosurg 2021; 155:e402-e411. [PMID: 34450323 DOI: 10.1016/j.wneu.2021.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intervertebral disk degeneration (IVDD) is closely associated with inflammatory environments. Curcumol has been shown to alleviate inflammation in various disease models, but its effects on IVDD remain unclear. In this study, we sought to determine the mechanism of curcumol in tumor necrosis factor (TNF)-α-induced nucleus pulposus cells and a mouse IVDD model. METHODS Nucleus pulposus cells were pretreated with curcumol and then exposed to TNF-α. Cell viability was analyzed using CCK-8, and the messenger ribonucleic acid and protein levels of inflammatory cytokines and PI3K/Akt/NF-κB-related signaling molecules were detected using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. The mouse IVDD model was established by puncturing the C6/7 level of the caudal spine, and then it was treated with curcumol after surgery. Alcian blue/orange G staining was performed to evaluate the severity of intervertebral disk damage, and immunohistochemistry was performed to detect the expression of TNF-α. Toxicologic effects of curcumol were measured by performing hematoxylin-eosin staining and enzyme-linked immunosorbent assay. RESULTS Curcumol reduced IL-1β, IL-6, and TNF-α production in NPCs, and the phosphorylation of proteins in the PI3K/Akt/NF-κB signaling pathway was also decreased. The PI3K/Akt/NF-κB-related signaling molecules decreased when TNF-α-induced NPCs were treated with a PI3K inhibitor; however, curcumol did not reverse these effects. In vivo, curcumol ameliorated the progression of IVDD at the early stage and did not exert toxicologic effects. CONCLUSIONS These results suggest a potential therapeutic use of curcumol to alleviate inflammation via the PI3K/Akt/NF-κB signaling pathway and delay the progression of IVDD.
Collapse
Affiliation(s)
- Shenghua He
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuanfei Fu
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bona Yan
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huangsheng Tan
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Haokang Li
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jin Li
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Dan Huang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhuohan Huang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Juyi Lai
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hualong Feng
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhitao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiming Lan
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Liang T, Qiu J, Li S, Deng Z, Qiu X, Hu W, Li P, Chen T, Liang Z, Zhou H, Gao B, Huang D, Liang A, Gao W. Inverse Agonist of Retinoid-Related Orphan Receptor-Alpha Prevents Apoptosis and Degeneration in Nucleus Pulposus Cells via Upregulation of YAP. Mediators Inflamm 2021; 2021:9954909. [PMID: 34366712 PMCID: PMC8337132 DOI: 10.1155/2021/9954909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhancheng Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
18
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jacobsen T, Hernandez P, Chahine N. Inhibition of toll-like receptor 4 protects against inflammation-induced mechanobiological alterations to intervertebral disc cells. Eur Cell Mater 2021; 41:576-591. [PMID: 34013512 PMCID: PMC8329983 DOI: 10.22203/ecm.v041a37] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is associated with elevated levels of inflammatory cytokines implicated in disease aetiology and matrix degradation. Toll-like receptor-4 (TLR4) has been shown to participate in the inflammatory responses of the nucleus pulposus (NP) and its levels are upregulated in disc degeneration. Activation of TLR4 in NP cells leads to significant, persistent changes in cell biophysical properties, including hydraulic permeability and osmotically active water content, as well as alterations to the actin cytoskeleton. The study hypothesis was that inflammation-induced changes to cellular biomechanical properties and actin cytoskeleton of NP cells could be prevented by inhibiting TLR4 signalling. Isolated NP cells from bovine discs were treated with lipopolysaccharide (LPS), the best studied TLR4 agonist, with or without treatment with the TLR4 inhibitor TAK-242. Cellular volume regulation responses to step osmotic loading were measured and the transient volume-response was captured by time-lapse microscopy. Volume-responses were analysed using mixture theory framework to investigate hydraulic permeability and osmotically active intracellular water content. Hydraulic permeability and cell radius were significantly increased with LPS treatment and these changes were blocked in cells treated with TAK-242. LPS-induced remodelling of cortical actin and IL-6 upregulation were also mitigated by TAK-242 treatment. These findings indicated that TLR4 signalling participated in NP cell biophysical regulation and may be an important target for mitigating altered cell responses observed in IVD inflammation and degeneration.
Collapse
Affiliation(s)
- T.D. Jacobsen
- Department of Biomedical Engineering, Columbia University,
New York, NY
| | - P.A. Hernandez
- Department of Orthopaedic Surgery, University of Texas
Southwestern Medical Centre, Dallas, TX
| | - N.O. Chahine
- Department of Biomedical Engineering, Columbia University,
New York, NY,Department of Orthopaedic Surgery, Columbia University, New
York, NY,Address for correspondence: Nadeen
Chahine, 650 W 168th St, William Black Building, 14th
Floor Room 14-1408E, New York, NY 10032, USA. Telephone number: +1 2123051515,
| |
Collapse
|
20
|
Tian Y, Ji Y, Mei X, Pan J, He W, Sun J, Wan K, Yang H. Lower Plasma Melatonin in the Intervertebral Disk Degeneration Patients Was Associated with Increased Proinflammatory Cytokines. Clin Interv Aging 2021; 16:215-224. [PMID: 33568902 PMCID: PMC7869702 DOI: 10.2147/cia.s290045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) was considered to be the pathological basis of intervertebral disc herniation (IDH). However, the plasma melatonin in the IDD cases and healthy controls remained unclear. Methods In this case–control study, a total of 71 IDD cases and 54 healthy controls were enrolled between April 2020 and August 2020. The diagnostic effect of plasma melatonin for IDD was detected using receiver operating characteristic curve. The correlations between two continuous variables were detected with the Pearson linear analyses. Results It was found that lower melatonin concentration was detected in the IDD cases (1.906 ± 1.041 vs 3.072 ± 0.511 pg/mL, P<0.001). Through receiver operating characteristic curve analyses, it was found that plasma melatonin could be used as a diagnostic biomarker for IDD (area under curve=0.808, P<0.001). In advanced correlation analyses, it was found that plasma melatonin concentration was negatively associated with the age, symptom durations, IDD disease severity and proinflammatory factors, including IL-6 and TNF-α concentrations (P<0.05). Comparing with the higher melatonin groups, significantly increased IL-6 (0.601 ± 0.085 vs 0.507 ± 0.167 pg/mL, P=0.028) and TNF-α (3.022 ± 0.286 vs 2.353 ± 0.641, P<0.001) were detected in the patients with lower melatonin concentration. Conclusion The plasma melatonin concentration was significantly decreased in the IDD cases and plasma melatonin could be used as a diagnostic biomarker for IDD. Lower plasma melatonin was associated with longer disease durations, elevated disease severity and higher inflammatory cytokines levels in IDD patients.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yiming Ji
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Mei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jun Pan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wenye He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jiajia Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Kaichen Wan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
|