1
|
Chen J, Zhou C, Fang W, Yin J, Shi J, Ge J, Shen L, Liu SM, Liu SJ. Identification of endothelial protein C receptor as a novel druggable agonistic target for reendothelialization promotion and thrombosis prevention of eluting stent. Bioact Mater 2024; 41:485-498. [PMID: 39210965 PMCID: PMC11359769 DOI: 10.1016/j.bioactmat.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
The commercially available drug-eluting stent with limus (rapamycin, everolimus, etc.) or paclitaxel inhibits smooth muscle cell (SMC), reducing the in-stent restenosis, whereas damages endothelial cell (EC) and delays stent reendothelialization, increasing the risk of stent thrombosis (ST) and sudden cardiac death. Here we present a new strategy for promoting stent reendothelialization and preventing ST by exploring the application of precise molecular targets with EC specificity. Proteomics was used to investigate the molecular mechanism of EC injury caused by rapamycin. Endothelial protein C receptor (EPCR) was screened out as a crucial EC-specific effector. Limus and paclitaxel repressed the EPCR expression, while overexpression of EPCR protected EC from coating (eluting) drug-induced injury. Furthermore, the ligand activated protein C (APC), polypeptide TR47, and compound parmodulin 2, which activated the target EPCR, promoted EC functions and inhibited platelet or neutrophil adhesion, and enhanced rapamycin stent reendothelialization in the simulated stent environment and in vitro. In vivo, the APC/rapamycin-coating promoted reendothelialization rapidly and prevented ST more effectively than rapamycin-coating alone, in both traditional metal stents and biodegradable stents. Additionally, overexpression or activation of the target EPCR did not affect the cellular behavior of SMC or the inhibitory effect of rapamycin on SMC. In conclusion, EPCR is a promising therapeutical agonistic target for pro-reendothelialization and anti-thrombosis of eluting stent. Activation of EPCR protects against coating drugs-induced EC injury, inflammatory cell, or platelet adhesion onto the stent. The novel application formula for APC/rapamycin-combined eluting promotes stent reendothelialization and prevents ST.
Collapse
Affiliation(s)
- Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
- Department of Cardiology, The First Affliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, PR China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Weilun Fang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Jiasheng Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jian Shi
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Shao-Jun Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| |
Collapse
|
2
|
Kahn SR, Arnold DM, Casari C, Desch KC, Devreese KMJ, Favaloro EJ, Gaertner F, Gouw SC, Gresele P, Griffioen AW, Heger L, Kini RM, Kohli S, Leader A, Lisman T, Lordkipanidzé M, Mullins E, Okoye HC, Rosovsky RP, Salles-Crawley II, Selby R, Sholzberg M, Stegner D, Violi F, Weyand AC, Williams S, Zheng Z. Illustrated State-of-the-Art Capsules of the ISTH 2023 Congress. Res Pract Thromb Haemost 2023; 7:100193. [PMID: 37538494 PMCID: PMC10394567 DOI: 10.1016/j.rpth.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) took place in person in Montréal, Canada, from June 24-28, 2023. The conference, held annually, highlighted cutting-edge advances in basic, translational, population and clinical sciences relevant to the Society. As for all ISTH congresses, we offered a special, congress-specific scientific theme; this year, the special theme was immunothrombosis. Certainly, over the last few years, COVID-19 infection and its related thrombotic and other complications have renewed interest in the concepts of thromboinflammation and immunothrombosis; namely, the relationship between inflammation, infection and clotting. Other main scientific themes of the Congress included Arterial Thromboembolism, Coagulation and Natural Anticoagulants, Diagnostics and Omics, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostatic System in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Microangiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. Among other sessions, the program included 28 State-of-the-Art (SOA) sessions with a total of 84 talks given by internationally recognized leaders in the field. SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the Congress.
Collapse
Affiliation(s)
- Susan R Kahn
- Medicine, Sir Mortimer B Davis Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montreal, Quebec
| | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Caterina Casari
- Université Paris-Saclay, INSERM, Hémostase inflammation thrombose HITH U1176, 94276, Le Kremlin-Bicêtre, France
| | - Karl C Desch
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, USA
| | - Katrien M J Devreese
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Emmanuel J Favaloro
- Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW Australia
| | - Florian Gaertner
- Technische Universität München (TUM), Ismaninger Straße 22, München, Bayern 81675, Germany
| | - Samantha C Gouw
- Amsterdam UMC location University of Amsterdam, Department of Pediatric Hematology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Paolo Gresele
- University of Perugia, Department of Medicine and Surgery, Head Section of Internal and Cardiovascular Medicine
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Lukas Heger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Departement of Cardiology and Angiology, University Hospital Freiburg Bad Krozingen, 79106 Freiburg, Germany
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Departement of Cardiology and Angiology, University Hospital Freiburg Bad Krozingen, 79106 Freiburg, Germany
| | | | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Avi Leader
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Eric Mullins
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati - College of Medicine, Cincinnati, OH, USA
| | - Helen Chioma Okoye
- College of Medicine, University of Nigeria, Ituku Ozalla campus, Enugu Nigeria
| | | | | | - Rita Selby
- Departments of Laboratory Medicine & Pathobiology and Department of Medicine, University of Toronto
| | | | | | - Francesco Violi
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela C Weyand
- Department of Pediatrics, University of Michigan Medical School
| | | | - Ze Zheng
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Versiti Blood Research Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
3
|
Guettler J, Forstner D, Gauster M. Maternal platelets at the first trimester maternal-placental interface - Small players with great impact on placenta development. Placenta 2021; 125:61-67. [PMID: 34920861 DOI: 10.1016/j.placenta.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
In human pregnancy, maternal platelet counts decrease with each trimester, reaching a reduction by approximately ten percent at term in uncomplicated cases and recover to the levels of the non-pregnant state a few weeks postpartum. The time when maternal platelets start to occur in the early human placenta most likely coincides with the appearance of loosely cohesive endovascular trophoblast plugs showing capillary-sized channels by mid first trimester. At that time, platelets accumulate in intercellular gaps of anchoring parts of trophoblast columns and start to adhere to the surface of placental villi and the chorionic plate. This is considered as normal process that contributes to placenta development by acting on both the extravillous- and the villous trophoblast compartment. Release of platelet cargo into intercellular gaps of anchoring cell columns may affect partial epithelial-to-mesenchymal transition and invasiveness of extravillous trophoblasts as well as deposition of fibrinoid in the basal plate. Activation of maternal platelets on the villous surface leads to perivillous fibrin-type fibrinoid deposition, contributing to the shaping of the developing placental villi and the intervillous space. In contrast, excess platelet activation at the villous surface leads to deregulation of the endocrine activity, sterile inflammation and local apoptosis of the syncytiotrophoblast. Platelets and their released cargo are adapted to pregnancy, and may be altered in high-risk pregnancies. Identification of different maternal platelet subpopulations, which show differential procoagulant ability and different response to anti-platelet therapy, are promising new future directions in deciphering the role of maternal platelets in human placenta physiology.
Collapse
Affiliation(s)
- Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria.
| |
Collapse
|