1
|
Xu J, Zhang T, Lv X, Shi L, Bai W, Ye L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods 2024; 13:3200. [PMID: 39410234 PMCID: PMC11475897 DOI: 10.3390/foods13193200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Among the pathogens that cause infectious diarrhea in China, Shigella is the most prominent. Shigellosis affects both adults and children, particularly those in developing nations, with nearly 190 million annual cases and a third resulting in fatalities. The recently emerged CRISPR/Cas system has also been increasingly applied for the detection of different biological targets. The lateral flow assay (LFA) has the advantages of short detection time, simple operation, high sensitivity, and low cost, and it provides an ideal platform for on-site detection. In this study, a recombinase polymerase amplification-CRISPR/Cas12a-LFA test for Shigella flexneri was constructed. The established method had good specificity and sensitivity, and the qualitative accuracy of 32 tested strains reached 100%. The detection limit of genomic DNA reached 8.3 copies/μL. With the advantages of high accuracy and portability, this diagnostic apparatus represents a novel method of identification and detection of Shigella flexneri, particularly in settings that lack complex laboratory infrastructure.
Collapse
Affiliation(s)
- Jieru Xu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Tianxin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Shandong Yuwang Ecological Food Industry Co., Ltd., Yucheng 251200, China
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Kanbar K, El Darzi R, Jaalouk DE. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front Genet 2024; 15:1434002. [PMID: 39144725 PMCID: PMC11321987 DOI: 10.3389/fgene.2024.1434002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed "undruggable" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
Collapse
Affiliation(s)
- Karim Kanbar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Lotfi M, Butler AE, Sukhorukov VN, Sahebkar A. Application of CRISPR-Cas9 technology in diabetes research. Diabet Med 2024; 41:e15240. [PMID: 37833064 DOI: 10.1111/dme.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Diabetes is a chronic disorder with rapidly increasing prevalence that is a major global issue of our current era. There are two major types of diabetes. Polygenic forms of diabetes include type 1 diabetes (T1D) and type 2 diabetes (T2D) and its monogenic forms are maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM). There are no permanent therapeutic approaches for diabetes and current therapies rely on regular administration of various drugs or insulin injection. Recently, gene editing strategies have offered new promise for treating genetic disorders. Targeted genome editing is a fast-growing technology, recruiting programmable nucleases to specifically modify target genomic sequences. These targeted nucleases generate double-strand breaks at target regions in the genome, which induce cellular repair pathways including non-homologous end joining (NHEJ) and homology-directed repair (HDR). Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a novel gene-editing system, permitting precise genome modification. CRISPR/Cas9 has great potential for various applications in diabetic research such as gene screening, generation of diabetic animal models and treatment. In this article, gene-editing strategies are summarized with a focus on the CRISPR/Cas9 approach in diabetes research.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Lin YQ, Feng KK, Lu JY, Le JQ, Li WL, Zhang BC, Li CL, Song XH, Tong LW, Shao JW. CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery. J Control Release 2023; 361:727-749. [PMID: 37591461 DOI: 10.1016/j.jconrel.2023.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.
Collapse
Affiliation(s)
- Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie-Ying Lu
- Faculty of Foreign Studies, Guangdong Baiyun University, Guangzhou 510450, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wu-Lin Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater Today Bio 2023; 20:100632. [PMID: 37122836 PMCID: PMC10130499 DOI: 10.1016/j.mtbio.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic eye diseases, a series of severe oculopathy, that will destroy normal ocular refractive media and imaging structures. It is characterized by the transformation of the epithelial cells into mesenchyme cells. Proliferative vitreoretinopathy (PVR) is one of these representative diseases. In this investigation, polyethylene glycol grafted branched Polyethyleneimine (PEI-g-PEG) was used as a non-viral gene vector in gene therapy of PVR to achieve anti-fibroblastic effects in vitro and in vivo by interfering with platelet-derived growth factor alpha receptor (PDGFR-α) in the epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells. The plasmid was wrapped by electrostatic conjugation. Physical characterization of the complexes indicated that the gene complexes were successfully prepared. In vitro, cellular experiments showed excellent biocompatibility of PEI-g-PEG, efficient cellular uptake of the gene complexes, and successful expression of the corresponding fragments. Through gene silencing technique, PEI-g-PEG/PDGFR-α shRNA successfully inhibited the process of EMT in vitro. Furthermore, in vivo animal experiments suggested that this method could effectively inhibit the progression of fibroproliferative membranes of PVR. Herein, a feasible and promising clinical idea was provided for developing non-viral gene vectors and preventing fibroblastic eye diseases by RNA interference (RNAi) technology.
Collapse
|
6
|
Yoh HZ, Chen Y, Shokouhi AR, Thissen H, Voelcker NH, Elnathan R. The influence of dysfunctional actin on polystyrene-nanotube-mediated mRNA nanoinjection into mammalian cells. NANOSCALE 2023; 15:7737-7744. [PMID: 37066984 DOI: 10.1039/d3nr01111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The advancement of nanofabrication technologies has transformed the landscape of engineered nano-bio interfaces, especially with vertically aligned nanoneedles (NNs). This enables scientists to venture into new territories, widening NN applications into increasingly more complex cellular manipulation and interrogation. Specifically, for intracellular delivery application, NNs have been shown to mediate the delivery of various bioactive cargos into a wide range of cells-a physical method termed "nanoinjection". Silicon (Si) nanostructures demonstrated great potential in nanoinjection, whereas the use of polymeric NNs for nanoinjection has rarely been explored. Furthermore, the underlying mechanism of interaction at the cell-NN interface is subtle and multifaceted, and not fully understood-underpinned by the design versatility of the NN biointerface. Recent studies have suggested that actin dynamic plays a pivotal role influencing the delivery efficacy. In this study, we fabricated a new class of NNs-a programmable polymeric nanotubes (NTs)-from polystyrene (PS) cell cultureware, designed to facilitate mRNA delivery into mouse embryonic fibroblast GPE86 cells. The PSNT delivery platform was able to mediate mRNA delivery with high delivery efficiency (∼83%). We also investigated the role of actin cytoskeleton in PSNTs mediated intracellular delivery by introducing two actin inhibitors-cytochalasin D (Cyto D) and jasplakinolide (Jas)-to cause dysfunctional cytoskeleton, via inhibiting actin polymerization and depolymerization, respectively (before and after the establishment of cell-PSNT interface). By inhibiting actin dynamics 12 h before cell-PSNT interfacing (pre-interface treatment), the mRNA delivery efficiencies were significantly reduced to ∼3% for Cyto D-treated samples and ∼1% for Jas-treated sample, as compared to their post-interface (2 h after cell-PSNT interfacing) counterpart (∼46% and ∼68%, respectively). The added flexibility of PSNTs have shown to help withstand mechanical breakage stemming from cytoskeletal forces in contrast to the SiNTs. Such findings will step-change our capacity to use programmable polymeric NTs in fundamental cellular processes related to intracellular delivery.
Collapse
Affiliation(s)
- Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
- Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Tariq Z, Qadeer MI, Anjum I, Hano C, Anjum S. Thalassemia and Nanotheragnostics: Advanced Approaches for Diagnosis and Treatment. BIOSENSORS 2023; 13:bios13040450. [PMID: 37185525 PMCID: PMC10136341 DOI: 10.3390/bios13040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Thalassemia is a monogenic autosomal recessive disorder caused by mutations, which lead to abnormal or reduced production of hemoglobin. Ineffective erythropoiesis, hemolysis, hepcidin suppression, and iron overload are common manifestations that vary according to genotypes and dictate, which diagnosis and therapeutic modalities, including transfusion therapy, iron chelation therapy, HbF induction, gene therapy, and editing, are performed. These conventional therapeutic methods have proven to be effective, yet have several disadvantages, specifically iron toxicity, associated with them; therefore, there are demands for advanced therapeutic methods. Nanotechnology-based applications, such as the use of nanoparticles and nanomedicines for theragnostic purposes have emerged that are simple, convenient, and cost-effective methods. The therapeutic potential of various nanoparticles has been explored by developing artificial hemoglobin, nano-based iron chelating agents, and nanocarriers for globin gene editing by CRISPR/Cas9. Au, Ag, carbon, graphene, silicon, porous nanoparticles, dendrimers, hydrogels, quantum dots, etc., have been used in electrochemical biosensors development for diagnosis of thalassemia, quantification of hemoglobin in these patients, and analysis of conventional iron chelating agents. This review summarizes the potential of nanotechnology in the development of various theragnostic approaches to determine thalassemia-causing gene mutations using various nano-based biosensors along with the employment of efficacious nano-based therapeutic procedures, in contrast to conventional therapies.
Collapse
Affiliation(s)
- Zahra Tariq
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | | | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Atçeken N, Yigci D, Ozdalgic B, Tasoglu S. CRISPR-Cas-Integrated LAMP. BIOSENSORS 2022; 12:1035. [PMID: 36421156 PMCID: PMC9688180 DOI: 10.3390/bios12111035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Pathogen-specific point-of-care (PoC) diagnostic tests have become an important need in the fight against infectious diseases and epidemics in recent years. PoC diagnostic tests are designed with the following parameters in mind: rapidity, accuracy, sensitivity, specificity, and ease of use. Molecular techniques are the gold standard for pathogen detection due to their accuracy and specificity. There are various limitations in adapting molecular diagnostic methods to PoC diagnostic tests. Efforts to overcome limitations are focused on the development of integrated molecular diagnostics by utilizing the latest technologies available to create the most successful PoC diagnostic platforms. With this point of view, a new generation technology was developed by combining loop-mediated isothermal amplification (LAMP) technology with clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) technology. This integrated approach benefits from the properties of LAMP technology, namely its high efficiency, short turnaround time, and the lack of need for a complex device. It also makes use of the programmable function of CRISPR-Cas technology and the collateral cleavage activity of certain Cas proteins that allow for convenient reporter detection. Thus, this combined technology enables the development of PoC diagnostic tests with high sensitivity, specificity, and ease of use without the need for complicated devices. In this review, we discuss the advantages and limitations of the CRISPR/Cas combined LAMP technology. We review current limitations to convert CRISPR combined LAMP into pathogen-specific PoC platforms. Furthermore, we point out the need to design more useful PoC platforms using microfabrication technologies by developing strategies that overcome the limitations of this new technology, reduce its complexity, and reduce the risk of contamination.
Collapse
Affiliation(s)
- Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Berin Ozdalgic
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Turkey
- School of Medical Services & Techniques, Dogus University, Istanbul 34775, Turkey
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
9
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnology 2022; 20:406. [PMID: 36076230 PMCID: PMC9461134 DOI: 10.1186/s12951-022-01618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia. .,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia. .,INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia. .,Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Geelong, VIC, 3216, Australia.
| |
Collapse
|
11
|
Gao F, Qiu X, Wang K, Shao C, Jin W, Zhang Z, Xu X. Targeting the Hepatic Microenvironment to Improve Ischemia/Reperfusion Injury: New Insights into the Immune and Metabolic Compartments. Aging Dis 2022; 13:1196-1214. [PMID: 35855339 PMCID: PMC9286916 DOI: 10.14336/ad.2022.0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is mainly characterized by high activation of immune inflammatory responses and metabolic responses. Understanding the molecular and metabolic mechanisms underlying development of hepatic IRI is critical for developing effective therapies for hepatic IRI. Recent advances in research have improved our understanding of the pathogenesis of IRI. During IRI, hepatocyte injury and inflammatory responses are mediated by crosstalk between the immune cells and metabolic components. This crosstalk can be targeted to treat or reverse hepatic IRI. Thus, a deep understanding of hepatic microenvironment, especially the immune and metabolic responses, can reveal new therapeutic opportunities for hepatic IRI. In this review, we describe important cells in the liver microenvironment (especially non-parenchymal cells) that regulate immune inflammatory responses. The role of metabolic components in the diagnosis and prevention of hepatic IRI are discussed. Furthermore, recent updated therapeutic strategies based on the hepatic microenvironment, including immune cells and metabolic components, are highlighted.
Collapse
Affiliation(s)
- Fengqiang Gao
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Qiu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- 7Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Wenjian Jin
- 8Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Zhang
- 6Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Zhejiang University Cancer Center, Hangzhou, China.,3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,4NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,5Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Xie R, Wang X, Wang Y, Ye M, Zhao Y, Yandell BS, Gong S. pH-Responsive Polymer Nanoparticles for Efficient Delivery of Cas9 Ribonucleoprotein With or Without Donor DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110618. [PMID: 35119139 PMCID: PMC9187620 DOI: 10.1002/adma.202110618] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) may offer new therapeutics for genetic diseases through gene disruption via nonhomologous end joining (NHEJ) or gene correction via homology-directed repair (HDR). However, clinical translation of CRISPR technology is limited by the lack of safe and efficient delivery systems. Here, facilely fabricated pH-responsive polymer nanoparticles capable of safely and efficiently delivering Cas9 ribonucleoprotein alone (termed NHEJ-NP, diameter = 29.4 nm), or together with donor DNA (termed HDR-NP, diameter = 33.3 nm) are reported. Moreover, intravenously, intratracheally, and intramuscularly injected NHEJ-NP induces efficient gene editing in mouse liver, lung, and skeletal muscle, respectively. Intramuscularly injected HDR-NP also leads to muscle strength recovery in a Duchenne muscular dystrophy mouse model. NHEJ-NP and HDR-NP possess many desirable properties including high payload loading content, small and uniform sizes, high editing efficiency, good biocompatibility, low immunogenicity, and ease of production, storage, and transport, making them great interest for various genome editing applications with clinical potentials.
Collapse
Affiliation(s)
- Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
13
|
Xi S, Yang YG, Suo J, Sun T. Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:873369. [PMID: 35419357 PMCID: PMC8996155 DOI: 10.3389/fbioe.2022.873369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Malignant tumors pose a serious threat to human health and have high fatality rates. Conventional clinical anti-tumor treatment is mainly based on traditional surgery, chemotherapy, radiotherapy, and interventional therapy, and even though these treatment methods are constantly updated, a satisfactory efficacy is yet to be obtained. Therefore, research on novel cancer treatments is being actively pursued. We review the classification of gene therapies of malignant tumors and their advantages, as well as the development of gene editing techniques. We further reveal the nano-drug delivery carrier effect in improving the efficiency of gene editing. Finally, we summarize the progress in recent years of gene editing techniques based on nano-drug delivery carriers in the treatment of various malignant tumors, and analyze the prospects of the technique and its restricting factors.
Collapse
Affiliation(s)
- Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- Gastrointestinal Surgical Department, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Jian Suo
- Gastrointestinal Surgical Department, The First Hospital, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Shi Y, Kang L, Mu R, Xu M, Duan X, Li Y, Yang C, Ding JW, Wang Q, Li S. CRISPR/Cas12a-Enhanced Loop-Mediated Isothermal Amplification for the Visual Detection of Shigella flexneri. Front Bioeng Biotechnol 2022; 10:845688. [PMID: 35265606 PMCID: PMC8899461 DOI: 10.3389/fbioe.2022.845688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Shigella flexneri is a serious threat to global public health, and a rapid detection method is urgently needed. The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system is widely used in gene editing, gene therapy, and in vitro diagnosis. Here, we combined loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a to develop a novel diagnostic test (CRISPR/Cas12a-E-LAMP) for the diagnosis of S. flexneri. The CRISPR/Cas12a-E-LAMP protocol conducts LAMP reaction for S. flexneri templates followed by CRISPR/Cas12a detection of predefined target sequences. LAMP primers and sgRNAs were designed to the highly conserved gene hypothetical protein (accession: AE014073, region: 4170556–4171,068) of S. flexneri. After the LAMP reaction at 60°C for 20 min, the pre-loaded CRISPR/Cas12a regents were mixed with the LAMP products in one tube at 37°C for 20 min, and the final results can be viewed by naked eyes with a total time of 40 min. The sensitivity of CRISPR/Cas12a-E-LAMP to detect S. flexneri was 4 × 100 copies/μl plasmids and without cross-reaction with other six closely related non-S. flexneri. Therefore, the CRISPR/Cas12a-E-LAMP assay is a useful method for the reliable and quick diagnosis of S. flexneri and may be applied in other pathogen infection detection.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Lan Kang
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Rongrong Mu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Xu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yujia Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chunhui Yang
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Jia-Wei Ding
- Clinical Laboratory Department, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qinghua Wang
- Department of Emergency, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
- *Correspondence: Shilin Li, ; Qinghua Wang,
| | - Shilin Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- *Correspondence: Shilin Li, ; Qinghua Wang,
| |
Collapse
|
15
|
An activated excretion-retarded tumor imaging strategy towards metabolic organs. Bioact Mater 2021; 14:110-119. [PMID: 35310363 PMCID: PMC8892090 DOI: 10.1016/j.bioactmat.2021.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intraoperative fluorescence-based tumor imaging plays a crucial role in performing the oncological safe tumor resection with the advantage of differentiating tumor from normal tissues. However, the application of these fluorescence contrast agents in renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC) was dramatically hammered as a result of lacking active targeting and poor retention time in tumor, which limited the Signal to Noise Ratio (SNR) and narrowed the imaging window for complicated surgery. Herein, we reported an activated excretion-retarded tumor imaging (AERTI) strategy, which could be in situ activated with MMP-2 and self-assembled on the surface of tumor cells, thereby resulting in a promoted excretion-retarded effect with an extended tumor retention time and enhanced SNR. Briefly, the AERTI strategy could selectively recognize the Integrin αvβ3. Afterwards, the AERTI strategy would be activated and in situ assembled into nanofibrillar structure after specifically cleaved by MMP-2 upregulated in a variety of human tumors. We demonstrated that the AERTI strategy was successfully accumulated at the tumor sites in the 786-O and HepG2 xenograft models. More importantly, the modified modular design strategy obviously enhanced the SNR of AERTI strategy in the imaging of orthotopic RCC and HCC. Taken together, the results presented here undoubtedly confirmed the design and advantage of this AERTI strategy for the imaging of tumors in metabolic organs. Fluorescence-based tumor imaging plays a crucial role in performing the oncological safe tumor resection. Self-assembled peptide possesses the advantage of active targeting and long-term retention time in tumor. The activated excretion-retarded tumor imaging strategy extended the tumor retention time and enhanced SNR. Assembly-mediated peptide probe successfully achieved the accurate identification of tumor boundaries and detection of minimal tumors (<2 mm).
Collapse
|
16
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Lestrell E, O'Brien CM, Elnathan R, Voelcker NH. Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Carmel M. O'Brien
- CSIRO Manufacturing Clayton Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| |
Collapse
|
19
|
Ban Q, Yang P, Chou SJ, Qiao L, Xia H, Xue J, Wang F, Xu X, Sun N, Zhang RY, Zhang C, Lee A, Liu W, Lin TY, Ko YL, Antovski P, Zhang X, Chiou SH, Lee CF, Hui W, Liu D, Jonas SJ, Weiss PS, Tseng HR. Supramolecular Nanosubstrate-Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100546. [PMID: 34105245 PMCID: PMC8282741 DOI: 10.1002/smll.202100546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) is an efficient and precise gene-editing technology that offers a versatile solution for establishing treatments directed at genetic diseases. Currently, CRISPR/Cas9 delivery into cells relies primarily on viral vectors, which suffer from limitations in packaging capacity and safety concerns. These issues with a nonviral delivery strategy are addressed, where Cas9•sgRNA ribonucleoprotein (RNP) complexes can be encapsulated into supramolecular nanoparticles (SMNP) to form RNP⊂SMNPs, which can then be delivered into targeted cells via supramolecular nanosubstrate-mediated delivery. Utilizing the U87 glioblastoma cell line as a model system, a variety of parameters for cellular-uptake of the RNP-laden nanoparticles are examined. Dose- and time-dependent CRISPR/Cas9-mediated gene disruption is further examined in a green fluorescent protein (GFP)-expressing U87 cell line (GFP-U87). The utility of an optimized SMNP formulation in co-delivering Cas9 protein and two sgRNAs that target deletion of exons 45-55 (708 kb) of the dystrophin gene is demonstrated. Mutations in this region lead to Duchenne muscular dystrophy, a severe genetic muscle wasting disease. Efficient delivery of these gene deletion cargoes is observed in a human cardiomyocyte cell line (AC16), induced pluripotent stem cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Qian Ban
- School of Life Sciences, Center for Stem Cell and Translational Medicine, Anhui University, Hefei, 230601, China
| | - Peng Yang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shih-Jie Chou
- Department of Medical Research, and Stem Cell Center, Division of Basic Research, Taipei Veterans General Hospital, Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street 112, Taipei, Taiwan
| | - Li Qiao
- School of Life Sciences, Center for Stem Cell and Translational Medicine, Anhui University, Hefei, 230601, China
| | - Haidong Xia
- School of Life Sciences, Center for Stem Cell and Translational Medicine, Anhui University, Hefei, 230601, China
| | - Jingjing Xue
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fang Wang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Materials Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Na Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ryan Y Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ceng Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Athena Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ting-Yi Lin
- Department of Medical Research, and Stem Cell Center, Division of Basic Research, Taipei Veterans General Hospital, Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street 112, Taipei, Taiwan
| | - Yu-Ling Ko
- Department of Medical Research, and Stem Cell Center, Division of Basic Research, Taipei Veterans General Hospital, Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street 112, Taipei, Taiwan
| | - Petar Antovski
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyue Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shih-Hwa Chiou
- Department of Medical Research, and Stem Cell Center, Division of Basic Research, Taipei Veterans General Hospital, Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street 112, Taipei, Taiwan
| | - Chin-Fa Lee
- Department of Chemistry, i-Center for Advanced Science and Technology (iCAST), Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University (NCHU), 145 Xingda Road, South Dist., Taichung, 402, Taiwan
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Hefei, 230031, China
| | - Dahai Liu
- School of Stomatology and Medicine, Foshan University, Foshan, 528000, China
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, California NanoSystems Institute (CNSI), Crump Institute for Molecular Imaging (CIMI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Geng S, Lei Y, Snead ML. Minimal amelogenin domain for enamel formation. JOM (WARRENDALE, PA. : 1989) 2021; 73:1696-1704. [PMID: 34456537 PMCID: PMC8386916 DOI: 10.1007/s11837-021-04687-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Amelogenin is the most abundant matrix protein guiding hydroxyapatite formation in enamel, the durable bioceramic tissue that covers vertebrate teeth. Here, we sought to refine structure-function for an amelogenin domain based on in vitro data showing a 42 amino acid amelogenin-derived peptide (ADP7) mimicked formation of hydroxyapatite similar to that observed for the full-length mouse 180 amino acid protein. In mice, we used CRISPR-Cas9 to express only ADP7 by the native amelogenin promoter. Analysis revealed ADP7 messenger RNA expression in developing mouse teeth with the formation of a thin layer of enamel. In vivo, ADP7 peptide partially replaced the function of the full-length amelogenin protein and its several protein isoforms. Protein structure-function relationships identified through in vitro assays can be deployed in whole model animals using CRISPR-Cas9 to validate function of a minimal protein domain to be translated for clinical use as an enamel biomimetic.
Collapse
Affiliation(s)
- Shuhui Geng
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Yaping Lei
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- Biology and Biologic Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Malcolm L Snead
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
| |
Collapse
|