1
|
Mo L, Yang C, Dai Y, Liu W, Gong Y, Guo Y, Zhu Y, Cao Y, Xiao X, Du S, Lu S, He J. Novel drug delivery systems for hirudin-based product development and clinical applications. Int J Biol Macromol 2025; 287:138533. [PMID: 39657884 DOI: 10.1016/j.ijbiomac.2024.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Hirudin, a natural biological polypeptide macromolecule secreted by the salivary glands of medicinal leech, is a specific thrombin inhibitor with multiple favourable bioactivities, including anti-coagulation, anti-fibrotic, and anti-tumour. Despite several anticoagulants have been widely applied in clinic, hirudin shows advantages in reducing the incidence of bleeding side effects by virtue of its high specificity in binding to thrombin. As a result, hirudin has been tested in clinical practice to prevent and treat several complex diseases. However, the application of this polypeptide macromolecule is compromised by its low bioavailability and bioactivity due to poor serum stability and susceptibility to protease degradation in vivo. To overcome these drawbacks, several studies have proposed novel drug delivery systems (NDDSs) to prevent the degradation and increase the targeting efficiency of hirudin. This systematic review summarises the clinical research on hirudin, including its classification and bioactivities, and highlights the opportunities and challenges in the clinical use of hirudin. The NDDSs designed to enhance the bioavailability and bioactivity of hirudin are discussed to explore its application in the treatment of related diseases. This review may considerably contribute to the advancement of delivery science and technology, particularly in the context of polypeptide-based therapeutics.
Collapse
Affiliation(s)
- Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Wei Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuhong Gong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| |
Collapse
|
2
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Huang Y, Wang J, Guo Y, Shen L, Li Y. Fibrinogen binding to activated platelets and its biomimetic thrombus-targeted thrombolytic strategies. Int J Biol Macromol 2024; 274:133286. [PMID: 38908635 DOI: 10.1016/j.ijbiomac.2024.133286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Thrombosis is associated with various fatal arteriovenous syndromes including ischemic stroke, myocardial infarction, and pulmonary embolism. However, current clinical thrombolytic treatment strategies still have many problems in targeting and safety to meet the thrombolytic therapy needs. Understanding the molecular mechanism that underlies thrombosis is critical in developing effective thrombolytic strategies. It is well known that platelets play a central role in thrombosis and the binding of fibrinogen to activated platelets is a common pathway in the process of clot formation. Based on this, a concept of biomimetic thrombus-targeted thrombolytic strategy inspired from fibrinogen binding to activated platelets in thrombosis was proposed, which could selectively bind to activated platelets at a thrombus site, thus enabling targeted delivery and local release of thrombolytic agents for effective thrombolysis. In this review, we first summarized the main characteristics of platelets and fibrinogen, and then introduced the classical molecular mechanisms of thrombosis, including platelet adhesion, platelet activation and platelet aggregation through the interactions of activated platelets with fibrinogen. In addition, we highlighted the recent advances in biomimetic thrombus-targeted thrombolytic strategies which inspired from fibrinogen binding to activated platelets in thrombosis. The possible future directions and perspectives in this emerging area are briefly discussed.
Collapse
Affiliation(s)
- Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| | - Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China
| | - Lingyue Shen
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stoma-tology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, PR China.
| |
Collapse
|
4
|
Wu S, Zhou Y, Wang Y, Zhang Z. Therapeutic Potentials of Medicinal Leech in Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1027-1051. [PMID: 38879745 DOI: 10.1142/s0192415x24500423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The use of medicinal leeches in clinical therapy has been employed for a long time, as it was originally recognized for exerting antithrombin effects. These effects were due to the ability of the leech to continuously suck blood while attached to human skin. According to Chinese Pharmacopoei, leeches used in traditional Chinese medicine mainly consist of Whitmania pigra Whitman, Hirudo nipponia Whitman, and Whitmania acranulata, but the latter two species are relatively scarce. The main constituents of leeches are protein and peptide macromolecules. They can be categorized into two categories based on their pharmacological effects. One group consists of active ingredients that directly target the coagulation system, such as hirudin, heparin, and histamine, which are widely known. The other group comprises protease inhibitor components like Decorsin and Hementin. Among these, hirudin secreted by the salivary glands of the leech is the most potent thrombin inhibitor and served as the sole remedy for preventing blood clotting until the discovery of heparin. Additionally, leeches play a significant role in various traditional Chinese medicine formulations. In recent decades, medicinal leeches have been applied in fields including anti-inflammatory treatment, cardiovascular disease management, antitumor treatment, and many other medical conditions. In this review, we present a comprehensive overview of the historical journey and medicinal applications of leeches in various medical conditions, emphasizing their pharmaceutical significance within traditional Chinese medicine. This review offers valuable insights for exploring additional therapeutic opportunities involving the use of leeches in various diseases and elucidating their underlying mechanisms for future research.
Collapse
Affiliation(s)
- Shaohua Wu
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yaya Zhou
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Changsha 410008, P. R. China
- Laboratory for Interdisciplinary Science of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zuping Zhang
- Department of Parasitology, Xiangya School of Medicine, Central South University Changsha, Hunan 410013, P. R. China
| |
Collapse
|
5
|
Yin J, Wang S, Wang J, Zhang Y, Fan C, Chao J, Gao Y, Wang L. An intelligent DNA nanodevice for precision thrombolysis. NATURE MATERIALS 2024; 23:854-862. [PMID: 38448659 DOI: 10.1038/s41563-024-01826-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Thrombosis is a leading global cause of death, in part due to the low efficacy of thrombolytic therapy. Here, we describe a method for precise delivery and accurate dosing of tissue plasminogen activator (tPA) using an intelligent DNA nanodevice. We use DNA origami to integrate DNA nanosheets with predesigned tPA binding sites and thrombin-responsive DNA fasteners. The fastener is an interlocking DNA triplex structure that acts as a thrombin recognizer, threshold controller and opening switch. When loaded with tPA and intravenously administrated in vivo, these DNA nanodevices rapidly target the site of thrombosis, track the circulating microemboli and expose the active tPA only when the concentration of thrombin exceeds a threshold. We demonstrate their improved therapeutic efficacy in ischaemic stroke and pulmonary embolism models, supporting the potential of these nanodevices to provide accurate tPA dosing for the treatment of different thromboses.
Collapse
Affiliation(s)
- Jue Yin
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
6
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
7
|
Li J, Lu K, Sun S, Peng J, Zhao L. Long-circulating nanoparticles as passive targeting nanocarriers for the treatment of thrombosis. NANOSCALE 2024; 16:6132-6141. [PMID: 38444355 DOI: 10.1039/d4nr00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thrombosis is the major cause of cardiovascular diseases. Only a small subset of patients could benefit from thrombolytic therapy due to the high bleeding risk brought about by the repeated administration of thrombolytic drugs. Nanoparticles with targeting ligands have been developed as nanocarriers of thrombolytic drugs to deliver the drug to the thrombus through active targeting. However, the passive targeting effect of nanoparticles on the thrombus is yet to be investigated. Herein, we prepared silica cross-linked micelles (SCLMs) with a long blood circulation half-life as drug carriers to target the thrombus through passive targeting. Compared with SCLMs modified with an active targeting ligand cRGD, the SCLMs exhibited similar targeting behavior to the thrombus in vivo. Loaded with the thrombolytic drug tirofiban, the passive targeting SCLMs showed a comparable therapeutic effect to cRGD-modified SCLMs in a mice model with pulmonary embolism and arterial thrombosis.
Collapse
Affiliation(s)
- Junyao Li
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Shaokai Sun
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
8
|
Tian X, Feng M, Wei X, Cheng C, He K, Jiang T, He B, Gu Z. In situ formed depot of elastin-like polypeptide-hirudin fusion protein for long-acting antithrombotic therapy. Proc Natl Acad Sci U S A 2024; 121:e2314349121. [PMID: 38442174 PMCID: PMC10945803 DOI: 10.1073/pnas.2314349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Thrombosis, induced by abnormal coagulation or fibrinolytic systems, is the most common pathology associated with many life-threatening cardio-cerebrovascular diseases. However, first-line anticoagulant drugs suffer from rapid drug elimination and risk of hemorrhagic complications. Here, we developed an in situ formed depot of elastin-like polypeptide (ELP)-hirudin fusion protein with a prodrug-like feature for long-term antithrombotic therapy. Highly secretory expression of the fusion protein was achieved with the assistance of the Ffu312 tag. Integration of hirudin, ELP, and responsive moiety can customize fusion proteins with properties of adjustable in vivo retention and controllable recovery of drug bioactivity. After subcutaneous injection, the fusion protein can form a reservoir through temperature-induced coacervation of ELP and slowly diffuse into the blood circulation. The biological activity of hirudin is shielded due to the N-terminal modification, while the activated key proteases upon thrombus occurrence trigger the cleavage of fusion protein together with the release of hirudin, which has antithrombotic activity to counteract thrombosis. We substantiated that the optimized fusion protein produced long-term antithrombotic effects without the risk of bleeding in multiple animal thrombosis models.
Collapse
Affiliation(s)
- Xue Tian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Mingxing Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing211816, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- Jinhua Institute of Zhejiang University, Jinhua321299, China
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou310016, China
- Liangzhu Laboratory, Hangzhou311121, China
| |
Collapse
|
9
|
Volkova A, Semenyuk P. Tyrosine phosphorylation of recombinant hirudin increases affinity to thrombin and antithrombotic activity. Proteins 2024; 92:329-342. [PMID: 37860993 DOI: 10.1002/prot.26616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Thrombin is one of the key enzymes of the blood coagulation system and a promising target for the development of anticoagulants. One of the most specific natural thrombin inhibitors is hirudin, contained in the salivary glands of medicinal leeches. The medicinal use of recombinant hirudin is limited because of the lack of sulfation on Tyr63, resulting in a 10-fold decrease in activity compared to native (sulfated) hirudin. In the present work, a set of hirudin derivatives was tested for affinity to thrombin: phospho-Tyr63, Tyr63(carboxymethyl)Phe, and Tyr63Glu mutants, which mimic Tyr63 sulfation and Gln65Glu mutant and lysine-succinylated hirudin, which enhance the overall negative charge of hirudin, as well as sulfo-hirudin and desulfo-hirudin as references. Using steered molecular dynamics simulations with subsequent umbrella sampling, phospho-hirudin was shown to exhibit the highest affinity to thrombin among all hirudin analogs, including native sulfo-hirudin; succinylated hirudin was also prospective. Phospho-hirudin exhibited the highest antithrombotic activity in in vitro assay in human plasma. Taking into account the modern methods for obtaining phospho-hirudin and succinylated hirudin, they are prospective as anticoagulants in clinical practice.
Collapse
Affiliation(s)
- Alina Volkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
10
|
Qi J, Han B, Wang Z, Jing L, Tian X, Sun J. Chuanzhitongluo Inhibits Neuronal Apoptosis in Mice with Acute Ischemic Stroke by Regulating the PI3K/AKT Signaling Pathway. Neuroscience 2024; 537:21-31. [PMID: 38040086 DOI: 10.1016/j.neuroscience.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND PURPOSE Apoptosis is involved in the occurrence and development of acute ischemic stroke (AIS). This study aimed to assess whether Chuanzhitongluo (CZTL), a multi-target and multi-pathway compound preparation, plays a neuroprotective role in AIS by modulating neuronal apoptosis via the PI3K/AKT signaling pathway. METHODS A mouse model of AIS was established by photochemical processes. Cerebral infarction volume was measured by 2% staining with 2, 3, and 5-triphenyl tetrazole chloride (TTC). Neuron apoptosis was assessed by TUNEL staining. Apoptosis RNA arrays were used to detect changes in apoptosis-related gene expression profiles. Western blotting was used to detect proteins involved in the PI3K/AKT signaling pathway. RESULTS The study demonstrated that CZTL could potentially mitigate neuronal apoptosis in AIS mice. This appears to be achieved via the up-regulation of certain genes such as BCL-2, Birc6, and others, coupled with the down-regulation of genes like BAX, Bid, and Casp3. Further validation revealed that CZTL could enhance the expression of BCL-2 and reduce the expression of Cleaved Caspase-3 and BAX at both the gene and protein levels. The study also found that CZTL can enhance the phosphorylation level of the PI3K/AKT signaling pathway. In contrast to these findings, the PI3K inhibitor LY294002 notably amplified neuronal apoptosis in AIS mice. CONCLUSIONS These findings imply that CZTL's ability to inhibit neuronal apoptosis may be linked to the activation of AIS's PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Jianjiao Qi
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Bin Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhiyuan Wang
- Department of Integrated Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lihong Jing
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xintao Tian
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Jinping Sun
- Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
11
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Soto J, Linsley C, Song Y, Chen B, Fang J, Neyyan J, Davila R, Lee B, Wu B, Li S. Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2455. [PMID: 37686965 PMCID: PMC10490511 DOI: 10.3390/nano13172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Following the global spread of COVID-19, scientists and engineers have adapted technologies and developed new tools to aid in the fight against COVID-19. This review discusses various approaches to engineering biomaterials, devices, and therapeutics, especially at micro and nano levels, for the prevention, diagnosis, and treatment of infectious diseases, such as COVID-19, serving as a resource for scientists to identify specific tools that can be applicable for infectious-disease-related research, technology development, and treatment. From the design and production of equipment critical to first responders and patients using three-dimensional (3D) printing technology to point-of-care devices for rapid diagnosis, these technologies and tools have been essential to address current global needs for the prevention and detection of diseases. Moreover, advancements in organ-on-a-chip platforms provide a valuable platform to not only study infections and disease development in humans but also allow for the screening of more effective therapeutics. In addition, vaccines, the repurposing of approved drugs, biomaterials, drug delivery, and cell therapy are promising approaches for the prevention and treatment of infectious diseases. Following a comprehensive review of all these topics, we discuss unsolved problems and future directions.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chase Linsley
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Josephine Neyyan
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Raul Davila
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Xuan X, Zhang S. Exploring the active ingredients and mechanism of Shenzhi Tongxin capsule against microvascular angina based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34190. [PMID: 37390241 PMCID: PMC10313304 DOI: 10.1097/md.0000000000034190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Microvascular angina (MVA) substantially threatens human health, and the Shenzhi Tongxin (SZTX) capsule demonstrates a remarkable cardioprotective effect, making it a potential treatment option for MVA. However, the precise mechanism of action for this medication remains unclear. This study utilized network pharmacology and molecular docking technology to investigate the active components and potential mechanisms underlying the efficacy of the SZTX capsule in alleviating MVA. METHODS The main ingredients of the SZTX capsule, along with their targets proteins and potential disease targets associated with MVA, were extracted from public available databases. This study utilized the STRING database and Cytoscape 3.7.2 software to establish a protein-protein interaction network and determine key signaling pathway targets. Subsequently, the DAVID database was utilized to conduct Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses on the intersection targets. To further investigate the molecular interactions, Autodock and PyMOL software were employed to perform molecular docking and visualize the resulting outcomes. RESULTS A total of 130 and 142 bioactive ingredients and intersection targets were identified respectively. Six core targets were obtained through protein-protein interaction network analysis. Gene Ontology enrichment analysis showed that 610 biological processes, 75 cellular components, and 92 molecular functions were involved. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that SZTX capsule molecular mechanism in the treatment of MVA may be related to several pathways, including mitogen-activated protein kinases, PI3K-Akt, HIF-1, and others. The results of molecular docking showed that the 7 key active ingredients of SZTX capsule had good binding ability to 6 core proteins. CONCLUSION SZTX capsule potentially exerts its effects by targeting multiple signaling pathways, including the mitogen-activated protein kinases signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. This multi-target approach enables SZTX capsule to inhibit inflammation, alleviate oxidative stress, regulate angiogenesis, and enhance endothelial function.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Wang S, Wang Y, Lai X, Sun J, Hu M, Chen M, Li C, Xu F, Fan C, Liu X, Song Y, Chen G, Deng Y. Minimalist Nanocomplex with Dual Regulation of Endothelial Function and Inflammation for Targeted Therapy of Inflammatory Vascular Diseases. ACS NANO 2023; 17:2761-2781. [PMID: 36719043 DOI: 10.1021/acsnano.2c11058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vascular disorders, characterized by vascular endothelial dysfunction combined with inflammation, are correlated with numerous fatal diseases, such as coronavirus disease-19 and atherosclerosis. Achieving vascular normalization is an urgent problem that must be solved when treating inflammatory vascular diseases. Inspired by the vascular regulatory versatility of nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) catalyzing l-arginine (l-Arg), the eNOS-activating effects of l-Arg, and the powerful anti-inflammatory and eNOS-replenishing effects of budesonide (BUD), we constructed a bi-prodrug minimalist nanoplatform co-loaded with BUD and l-Arg via polysialic acid (PSA) to form BUD-l-Arg@PSA. This promoted vascular normalization by simultaneously regulating vascular endothelial dysfunction and inflammation. Mediated by the special affinity between PSA and E-selectin, which is highly expressed on the surface of activated endothelial cells (ECs), BUD-l-Arg@PSA selectively accumulated in activated ECs, targeted eNOS expression and activation, and promoted NO production. Consequently, the binary synergistic regulation of the NO/eNOS signaling pathway occurred and improved vascular endothelial function. NO-induced nuclear factor-kappa B alpha inhibitor (IκBα) stabilization and BUD-induced nuclear factor-kappa B (NF-κB) response gene site occupancy achieved dual-site blockade of the NF-κB signaling pathway, thereby reducing the inflammatory response and inhibiting the infiltration of inflammation-related immune cells. In a renal ischemia-reperfusion injury mouse model, BUD-l-Arg@PSA reduced acute injury. In an atherosclerosis mouse model, BUD-l-Arg@PSA decreased atherosclerotic plaque burden and improved vasodilation. This represents a revolutionary therapeutic strategy for inflammatory vascular diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jianwen Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Feng Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
15
|
Hale MM, Medina SH. Biomaterials-Enabled Antithrombotics: Recent Advances and Emerging Strategies. Mol Pharm 2022; 19:4453-4465. [PMID: 36149250 PMCID: PMC9728464 DOI: 10.1021/acs.molpharmaceut.2c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Antithrombotic and thrombolytic therapies are used to prevent, treat, and remove blood clots in various clinical settings, from emergent to prophylactic. While ubiquitous in their healthcare application, short half-lives, off-target effects, overdosing complications, and patient compliance continue to be major liabilities to the utility of these agents. Biomaterials-enabled strategies have the potential to comprehensively address these limitations by creating technologies that are more precise, durable, and safe in their antithrombotic action. In this review, we discuss the state of the art in anticoagulant and thrombolytic biomaterials, covering the nano to macro length scales. We emphasize current methods of formulation, discuss how material properties affect controlled release kinetics, and summarize modern mechanisms of clot-specific drug targeting. The preclinical efficacy of these technologies in an array of cardiovascular applications, including stroke, pulmonary embolism, myocardial infarction, and blood contacting devices, is summarized and performance contrasted. While significant advances have already been made, ongoing development efforts look to deliver bioresponsive "smart" biomaterials that will open new precision medicine opportunities in cardiology.
Collapse
Affiliation(s)
- Macy M. Hale
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
16
|
Li S, Zhang K, Ma Z, Zhang W, Song Z, Wang W, Han H. Biomimetic Nanoplatelets to Target Delivery Hirudin for Site-Specific Photothermal/Photodynamic Thrombolysis and Preventing Venous Thrombus Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203184. [PMID: 36344452 DOI: 10.1002/smll.202203184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Due to the high recurrence rate and mortality of venous thrombosis, there is an urgent need for research on antithrombotic strategies. Because of the short half-life, poor targeting capabilities, bleeding complications, and neurotoxic effects of conventional pharmacological thrombolysis methods, it is essential to develop an alternative strategy to noninvasive thrombolysis and decrease the recurrence rate of venous thrombosis. A platelet-mimetic porphyrin-based covalent organic framework-engineered melanin nanoplatform, to target delivery of hirudin to the vein thrombus site for noninvasive thrombolysis and effective anticoagulation, is first proposed. Owing to the thrombus-hosting properties of platelet membranes, the nanoplatform can target the thrombus site and then activate hyperthermia and reactive oxygen species for thrombolysis under near-infrared light irradiation. The photothermal therapy/photodynamic therapy combo can substantially improve the effectiveness (85.7%) of thrombolysis and prevent secondary embolism of larger fragments. Afterward, the highly loaded (97%) and slow-release hirudin (14 days) are effective in preventing the recurrence of blood clots without the danger of thrombocytopenia. The described biomimetic nanostructures offer a promising option for improving the efficacy of thrombolytic therapy and reducing the risk of bleeding complications in thrombus associated diseases.
Collapse
Affiliation(s)
- Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| |
Collapse
|
17
|
Zhang K, Ma Z, Li S, Zhang W, Foda MF, Zhao Y, Han H. Platelet-Covered Nanocarriers for Targeted Delivery of Hirudin to Eliminate Thrombotic Complication in Tumor Therapy. ACS NANO 2022; 16:18483-18496. [PMID: 36350264 DOI: 10.1021/acsnano.2c06666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most patients are at high risk of thrombosis during cancer treatment. However, the major discrepancy in the therapeutic mechanisms and microenvironment between tumors and thrombosis makes it challenging for a panacea to treat cancer while being able to eliminate the risk of thrombosis. Herein, we developed a biomimetic MnOx/Ag2S nanoflower platform with platelet membrane modification (MnOx@Ag2S@hirudin@platelet membrane: MAHP) for the long-term release of anticoagulant drugs to treat thrombosis together with tumor therapy. This MAHP platform could achieve the targeted delivery of hirudin to the thrombus site and perform the controlled release under the irradiation of near-infrared light, demonstrating effective removal of the thrombus. Moreover, MAHP could inhibit tumor progression and prolong the survival time of mice with thromboembolic complications.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuting Li
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Weiyun Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Mohamed Frahat Foda
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
18
|
Functionally integrating nanoparticles alleviate deep vein thrombosis in pregnancy and rescue intrauterine growth restriction. Nat Commun 2022; 13:7166. [PMID: 36418325 PMCID: PMC9684510 DOI: 10.1038/s41467-022-34878-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
There is still unmet demand for effective, safe, and patient-friendly anti-thrombotics to treat deep vein thrombosis (DVT) during pregnancy. Here we first engineer a bioactive amphiphile (TLH) by simultaneously conjugating Tempol and linoleic acid onto low molecular weight heparin (LMWH), which can assemble into multifunctional nanoparticles (TLH NP). In pregnant rats with DVT, TLH NP can target and dissolve thrombi, recanalize vessel occlusion, and eradicate the recurrence of thromboembolism, thereby reversing DVT-mediated intrauterine growth restriction and delayed development of fetuses. Mechanistically, therapeutic effects of TLH NP are realized by inhibiting platelet aggregation, facilitating thrombolysis, reducing local inflammation, attenuating oxidative stress, promoting endothelial repair, and increasing bioavailability. By decorating with a fibrin-binding peptide, targeting efficiency and therapeutic benefits of TLH NP are considerably improved. Importantly, LMWH nanotherapies show no toxicities to the mother and fetus at the dose 10-time higher than the examined therapeutic dosage.
Collapse
|
19
|
Choi W, Cho H, Kim G, Youn I, Key J, Han S. Targeted thrombolysis by magnetoacoustic particles in photothrombotic stroke model. Biomater Res 2022; 26:58. [PMID: 36273198 PMCID: PMC9587564 DOI: 10.1186/s40824-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant tissue plasminogen activator (rtPA) has a short half-life, and additional hemorrhagic transformation (HT) can occur when treatment is delayed. Here, we report the design and thrombolytic performance of 3 [Formula: see text]m discoidal polymeric particles loaded with rtPA and superparamagnetic iron oxide nanoparticles (SPIONs), referred to as rmDPPs, to address the HT issues of rtPA. METHODS The rmDPPs consisted of a biodegradable polymeric matrix, rtPA, and SPIONs and were synthesized via a top-down fabrication. RESULTS The rmDPPs could be concentrated at the target site with magnetic attraction, and then the rtPA could be released under acoustic stimulus. Therefore, we named that the particles had magnetoacoustic properties. For the in vitro blood clot lysis, the rmDPPs with magnetoacoustic stimuli could not enhance the lytic potential compared to the rmDPPs without stimulation. Furthermore, although the reduction of the infarcts in vivo was observed along with the magnetoacoustic stimuli in the rmDPPs, more enhancement was not achieved in comparison with the rtPA. A notable advantage of rmDPPs was shown in delayed administration of rmDPPs at poststroke. The late treatment of rmDPPs with magnetoacoustic stimuli could reduce the infarcts and lead to no additional HT issues, while rtPA alone could not show any favorable prognosis. CONCLUSION The rmDPPs may be advantageous in delayed treatment of thrombotic patients.
Collapse
Affiliation(s)
- Wonseok Choi
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hyeyoun Cho
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Gahee Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea.
| | - Sungmin Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea. .,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
21
|
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Ran Mo
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| |
Collapse
|
22
|
Wang S, Wang R, Meng N, Lu L, Wang J, Zhou J, Lu J, Xu Q, Xie C, Zhan C, Li Y, Yu Y, Lu W, Liu M. Engineered platelets-based drug delivery platform for targeted thrombolysis. Acta Pharm Sin B 2022; 12:2000-2013. [PMID: 35847517 PMCID: PMC9279721 DOI: 10.1016/j.apsb.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombolytic agents have thus far yielded limited therapeutic benefits in the treatment of thrombotic disease due to their short half-life, low targeting ability, and association with serious adverse reactions, such as bleeding complications. Inspired by the natural roles of platelets during thrombus formation, we fabricated a platelet-based delivery system (NO@uPA/PLTs) comprising urokinase (uPA) and arginine (Arg) for targeted thrombolysis and inhibition of re-embolism. The anchoring of uPA to the platelet surface by lipid insertion increased the thrombotic targeting and in vivo circulation duration of uPA without disturbing platelet functions. Nitric oxide (NO) generated by the loaded Arg inhibited platelet aggregation and activation at the damaged blood vessel, thereby inhibiting re-embolism. NO@uPA/PLTs effectively accumulated at the thrombi in pulmonary embolism and carotid artery thrombosis model mice and exerted superior thrombolytic efficacy. In addition, the platelet delivery system showed excellent thrombus recurrence prevention ability in a mouse model of secondary carotid artery injury. The coagulation indicators in vivo showed that the platelet-based uPA and NO co-delivery system possessed a low hemorrhagic risk, providing a promising tool for rapid thrombolysis and efficient inhibition of posttreatment re-embolism.
Collapse
Affiliation(s)
- Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University and the Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Jiasheng Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yao Li
- The National Facility for Protein Science in Shanghai (NFPS), Shanghai 201210, China
| | - Yang Yu
- The National Facility for Protein Science in Shanghai (NFPS), Shanghai 201210, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
- Corresponding authors. Tel./fax: +86 21 51980090 (Weiyue Lu); +86 21 51980092 (Min Liu).
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 51980090 (Weiyue Lu); +86 21 51980092 (Min Liu).
| |
Collapse
|
23
|
Zhu Y, Han HH, Zhai L, Yan Y, Liu X, Wang Y, Lei L, Wang JC. Engineering a "three-in-one" hirudin prodrug to reduce bleeding risk: A proof-of-concept study. J Control Release 2021; 338:462-471. [PMID: 34481024 DOI: 10.1016/j.jconrel.2021.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
An ideal anticoagulant should have at least three properties including targeted delivery to the thrombosis site, local activation or releasing to centralize the anti-thrombosis effects and thus reduce the bleeding risks, and long persistence in circulation to avoid repeated administration. In the present study, we sought to test a "three-in-one" strategy to design new protein anticoagulants. Based on these criteria, we constructed two hirudin prodrugs, R824-HV-ABD and ABD-HV-R824. The R824 peptide can bind phosphatidylserine on the surface of the procoagulant platelets and thus guide the prodrug to the thrombosis sites; albumin-binding domain (ABDs) can bind the prodrug to albumin, and thereby increase its persistence in circulation; the hirudin (HV) core in the prodrug is flanked by factor Xa recognition sites, thus factor Xa at the thrombosis site can cleave the fusion proteins and release the activated hirudin locally. Hirudin prodrugs were able to bind with procoagulant platelets and human serum albumin in vitro with high affinity, targeted concentrated and prevented the formation of occlusive thrombi in rat carotid artery injury model. Their effective time was significantly extended compared to native hirudin, and R824-HV-ABD showed a significantly improved half-life of about 24 h in rats. The bleeding time of prodrug-treated mice was much shorter than that of hirudin-treated mice. The results from the proof-of-concept studies, for the first time, demonstrate that "three-in-one" prodrug strategy may be a good solution for protein or peptide anticoagulants to reduce their bleeding risks.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hu-Hu Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lin Zhai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinye Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liandi Lei
- Peking University Medical and Health Analysis Center, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Laboratory of innovative formulations and pharmaceutical excipients, Ningbo Institute of Marine Medicine, Peking University, Beijing, China.
| |
Collapse
|
24
|
Wang Y, Li Z, Hu Q. Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. NANO TODAY 2021; 38:101127. [DOI: 10.1016/j.nantod.2021.101127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Zarubova J, Zhang X, Hoffman T, Hasani-Sadrabadi MM, Li S. Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. MATTER 2021; 4:1528-1554. [PMID: 33723531 PMCID: PMC7942141 DOI: 10.1016/j.matt.2021.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infection by SARS-CoV-2 virus often induces the dysregulation of immune responses, tissue damage, and blood clotting. Engineered biomaterials from the nano- to the macroscale can provide targeted drug delivery, controlled drug release, local immunomodulation, enhanced immunity, and other desirable functions to coordinate appropriate immune responses and to repair tissues. Based on the understanding of COVID-19 disease progression and immune responses to SARS-CoV-2, we discuss possible immunotherapeutic strategies and highlight biomaterial approaches from the perspectives of preventive immunization, therapeutic immunomodulation, and tissue healing and regeneration. Successful development of biomaterial platforms for immunization and immunomodulation will not only benefit COVID-19 patients, but also have broad applications for a variety of infectious diseases.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Xuexiang Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives - A Review. Front Pharmacol 2021; 12:660757. [PMID: 33935784 PMCID: PMC8085555 DOI: 10.3389/fphar.2021.660757] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hirudin, an acidic polypeptide secreted by the salivary glands of Hirudo medicinalis (also known as "Shuizhi" in traditional Chinese medicine), is the strongest natural specific inhibitor of thrombin found so far. Hirudin has been demonstrated to possess potent anti-thrombotic effect in previous studies. Recently, increasing researches have focused on the anti-thrombotic activity of the derivatives of hirudin, mainly because these derivatives have stronger antithrombotic activity and lower bleeding risk. Additionally, various bioactivities of hirudin have been reported as well, including wound repair effect, anti-fibrosis effect, effect on diabetic complications, anti-tumor effect, anti-hyperuricemia effect, effect on cerebral hemorrhage, and others. Therefore, by collecting and summarizing publications from the recent two decades, the pharmacological activities, pharmacokinetics, novel preparations and derivatives, as well as toxicity of hirudin were systematically reviewed in this paper. In addition, the clinical application, the underlying mechanisms of pharmacological effects, the dose-effect relationship, and the development potential in new drug research of hirudin were discussed on the purpose of providing new ideas for application of hirudin in treating related diseases.
Collapse
Affiliation(s)
- Chen Junren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xie Xiaofang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Huiqiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Gangmin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Yanpeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cao Xiaoyu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gao Yuqing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yanan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Patil R, Rajput A, Dewani M, Mehta S, Ahamad N, Banerjee R. Hydrogel-Based Therapies for Cardiovascular Diseases. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:399-427. [DOI: 10.1007/978-981-16-4420-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|