1
|
Zhou WH, Wang XW, Ren RJ, Fu YX, Chang YJ, Xu XY, Tang H, Jin XM. Multi-particle quantum walks on 3D integrated photonic chip. LIGHT, SCIENCE & APPLICATIONS 2024; 13:296. [PMID: 39424638 PMCID: PMC11489590 DOI: 10.1038/s41377-024-01627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Quantum walks provide a speed-up in computational power for various quantum algorithms and serve as inspiration for the construction of complex graph representations. Many pioneering works have been dedicated to expanding the experimental state space and the complexity of graphs. However, these experiments are mostly limited to small experimental scale, which do not reach a many-body level and fail to reflect the multi-particle quantum interference effects among non-adjacent modes. Here, we present a quantum walk with three photons on a two-dimensional triangular lattice, which is mapped to a 19 × 19 × 19 high-dimensional state space and constructs a complex graph with 6859 nodes and 45,486 edges. By utilizing the statistical signatures of the output combinations and incorporating machine learning techniques, we successfully validate the nonclassical properties of the experiment. Our implementation provides a paradigm for exponentially expanding the state space and graph complexity of quantum walks, paving the way for surmounting the classical regime in large-scale quantum simulations.
Collapse
Affiliation(s)
- Wen-Hao Zhou
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Xiao-Wei Wang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Ruo-Jing Ren
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-Xuan Fu
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Yi-Jun Chang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Xiao-Yun Xu
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
- Chip Hub for Integrated Photonics Xplore (CHIPX), Shanghai Jiao Tong University, Wuxi, 214000, China
| | - Hao Tang
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Xian-Min Jin
- Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Hefei National Laboratory, Hefei, 230088, China.
- Chip Hub for Integrated Photonics Xplore (CHIPX), Shanghai Jiao Tong University, Wuxi, 214000, China.
- TuringQ Co., Ltd., Shanghai, 200240, China.
| |
Collapse
|
2
|
Ehrhardt M, Dittel C, Heinrich M, Szameit A. Topological Hong-Ou-Mandel interference. Science 2024; 384:1340-1344. [PMID: 38900876 DOI: 10.1126/science.ado8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024]
Abstract
The interplay of topology and optics provides a route to pursue robust photonic devices, with the application to photonic quantum computation in its infancy. However, the possibilities of harnessing topological structures to process quantum information with linear optics, through the quantum interference of photons, remain largely uncharted. Here, we present a Hong-Ou-Mandel interference effect of topological origin. We show that this interference of photon pairs-ranging from constructive to destructive-is solely determined by a synthetic magnetic flux, rendering it resilient to errors on a fundamental level. Our implementation establishes a quantized flux that facilitates exclusively destructive quantum interference. Our findings pave the way toward the development of next-generation photonic quantum circuitry and scalable quantum computing protected by virtue of topologically robust quantum gates.
Collapse
Affiliation(s)
- Max Ehrhardt
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Christoph Dittel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Matthias Heinrich
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Alexander Szameit
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| |
Collapse
|
3
|
Zhou WH, Jiao ZQ, Li H, Gao J, Wang XW, Ren RJ, Xu XY, Qiao LF, Jin XM. Experimental 61-partite entanglement on a three-dimensional photonic chip. OPTICS EXPRESS 2023; 31:17782-17791. [PMID: 37381503 DOI: 10.1364/oe.492725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 06/30/2023]
Abstract
Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.
Collapse
|
5
|
Zhou WH, Vijayan MK, Wang XW, Lu YH, Gao J, Jiao ZQ, Ren RJ, Chang YJ, Shen ZS, Rohde PP, Jin XM. Reducing circuit complexity in optical quantum computation using 3D architectures. OPTICS EXPRESS 2022; 30:32887-32894. [PMID: 36242341 DOI: 10.1364/oe.464108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.
Collapse
|
6
|
Abstract
We study the transport properties on honeycomb networks motivated by graphene structures by using the continuous-time quantum walk (CTQW) model. For various relevant topologies we consider the average return probability and its long-time average as measures for the transport efficiency. These quantities are fully determined by the eigenvalues and the eigenvectors of the connectivity matrix of the network. For all networks derived from graphene structures we notice a nontrivial interplay between good spreading and localization effects. Flat graphene with similar number of hexagons along both directions shows a decrease in transport efficiency compared to more one-dimensional structures. This loss can be overcome by increasing the number of layers, thus creating a graphite network, but it gets less efficient when rolling up the sheets so that a nanotube structure is considered. We found peculiar results for honeycomb networks constructed from square graphene, i.e. the same number of hexagons along both directions of the graphene sheet. For these kind of networks we encounter significant differences between networks with an even or odd number of hexagons along one of the axes.
Collapse
|
7
|
Wang L, Wang Z, Wang C, Ren J. Cycle Flux Ranking of Network Analysis in Quantum Thermal Devices. PHYSICAL REVIEW LETTERS 2022; 128:067701. [PMID: 35213197 DOI: 10.1103/physrevlett.128.067701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Manipulating quantum thermal transport relies on uncovering the principle working cycles of quantum devices. Here we introduce the cycle flux ranking of network analysis to nonequilibrium thermal devices characterized as a quantum-transition network. To excavate the principal mechanism out of complex transport behaviors, we decompose the network into cycle trajectories, collect the cycle fluxes by algebraic graph theory, and select top-ranked cycle fluxes, i.e., the cycle trajectories with highest probabilities. We exemplify the cycle flux ranking in typical quantum device models, e.g., a thermal-drag spin-Seebeck pump and a quantum thermal transistor. Top-ranked cycle trajectories indeed elucidate the principal working mechanisms. Therefore, cycle flux ranking provides an alternative perspective that naturally describes the working cycle corresponding to the main functionality of quantum thermal devices, which would further guide the device optimization with desired performance.
Collapse
Affiliation(s)
- Luqin Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Zi Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|