1
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
4
|
Mignerot L, Gimond C, Bolelli L, Bouleau C, Sandjak A, Boulin T, Braendle C. Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off. eLife 2024; 12:RP88253. [PMID: 38564369 PMCID: PMC10987095 DOI: 10.7554/elife.88253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Asma Sandjak
- Université Côte d’Azur, CNRS, Inserm, IBVNiceFrance
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de LyonLyonFrance
| | | |
Collapse
|
5
|
Parée T, Noble L, Ferreira Gonçalves J, Teotónio H. rec-1 loss of function increases recombination in the central gene clusters at the expense of autosomal pairing centers. Genetics 2024; 226:iyad205. [PMID: 38001364 DOI: 10.1093/genetics/iyad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Meiotic control of crossover (CO) number and position is critical for homologous chromosome segregation and organismal fertility, recombination of parental genotypes, and the generation of novel genetic combinations. We here characterize the recombination rate landscape of a rec-1 loss of function modifier of CO position in Caenorhabditis elegans, one of the first ever modifiers discovered. By averaging CO position across hermaphrodite and male meioses and by genotyping 203 single-nucleotide variants covering about 95% of the genome, we find that the characteristic chromosomal arm-center recombination rate domain structure is lost in the loss of function rec-1 mutant. The rec-1 loss of function mutant smooths the recombination rate landscape but is insufficient to eliminate the nonuniform position of CO. Lower recombination rates in the rec-1 mutant are particularly found in the autosomal arm domains containing the pairing centers. We further find that the rec-1 mutant is of little consequence for organismal fertility and egg viability and thus for rates of autosomal nondisjunction. It nonetheless increases X chromosome nondisjunction rates and thus male appearance. Our findings question the maintenance of recombination rate heritability and genetic diversity among C. elegans natural populations, and they further suggest that manipulating genetic modifiers of CO position will help find quantitative trait loci located in low-recombining genomic regions normally refractory to discovery.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
- EnviroDNA, 95 Albert St., Brunswick, Victoria 3065, Australia
| | - João Ferreira Gonçalves
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| |
Collapse
|
6
|
Ikeda Y, Koike Y, Shinya R, Hasegawa K. Geographical distribution and phoretic associations of the viviparous nematode Tokorhabditis atripennis with Onthophagus dung beetles in Japan. J Nematol 2024; 56:20240013. [PMID: 38666075 PMCID: PMC11044808 DOI: 10.2478/jofnem-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 04/28/2024] Open
Abstract
Viviparity is generally considered to be rare in animals. In nematodes, only six species of Rhabditida are viviparous. Five of these species have been identified in association with Onthophagus dung beetles, with Tokorhabditis atripennis being repeatedly isolated from the dung beetle Onthophagus atripennis in Japan. T. atripennis is easy to culture in a laboratory setting, and its host, O. atripennis, is distributed all over Japan. Therefore, T. atripennis is an ideal candidate for ecological and evolutionary studies on viviparity. However, the extent of their distribution and relationship with dung beetles, as well as habitats, remain unclear. In the present study, we conducted field surveys and successfully isolated 27 strains of viviparous nematodes associated with tunneler dung beetles from various regions of Japan, all of which were identified as T. atripennis. T. atripennis exhibited a strong association with Onthophagus dung beetles, especially O. apicetinctus and O. atripennis. And it was predominantly found in specific anatomical locations on the beetle bodies, such as the 'groove between pronotum and elytron' and the 'back of the wings'. Our findings suggest that Onthophagus species are the primary hosts for T. atripennis, and T. atripennis exhibits a close relationship with the living environments of tunneler beetles. This association may play a significant role in the evolution of viviparity in nematodes.
Collapse
Affiliation(s)
- Yuya Ikeda
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yuto Koike
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Japan
| |
Collapse
|
7
|
Raju A, Xue B, Leibler S. A theoretical perspective on Waddington's genetic assimilation experiments. Proc Natl Acad Sci U S A 2023; 120:e2309760120. [PMID: 38091287 PMCID: PMC10743363 DOI: 10.1073/pnas.2309760120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington's original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington's picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon-Waddington's, expressed in terms of an individual organism's developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - BingKan Xue
- Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL32611
| | - Stanislas Leibler
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY01065
| |
Collapse
|
8
|
Levis NA, Ragsdale EJ. A histone demethylase links the loss of plasticity to nongenetic inheritance and morphological change. Nat Commun 2023; 14:8439. [PMID: 38114491 PMCID: PMC10730525 DOI: 10.1038/s41467-023-44306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Plasticity is a widespread feature of development, enabling phenotypic change based on the environment. Although the evolutionary loss of plasticity has been linked both theoretically and empirically to increased rates of phenotypic diversification, molecular insights into how this process might unfold are generally lacking. Here, we show that a regulator of nongenetic inheritance links evolutionary loss of plasticity in nature to changes in plasticity and morphology as selected in the laboratory. Across nematodes of Diplogastridae, which ancestrally had a polyphenism, or discrete plasticity, in their feeding morphology, we use molecular evolutionary analyses to screen for change associated with independent losses of plasticity. Having inferred a set of ancestrally polyphenism-biased genes from phylogenetically informed gene-knockouts and gene-expression comparisons, selection signatures associated with plasticity's loss identify the histone H3K4 di/monodemethylase gene spr-5/LSD1/KDM1A. Manipulations of this gene affect both sensitivity and variation in plastic morphologies, and artificial selection of manipulated lines drive multigenerational shifts in these phenotypes. Our findings thus give mechanistic insight into how traits are modified as they traverse the continuum of greater to lesser environmental sensitivity.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
9
|
Chen P, Zhang J. Transcriptomic analysis reveals the rareness of genetic assimilation of gene expression in environmental adaptations. SCIENCE ADVANCES 2023; 9:eadi3053. [PMID: 37756399 PMCID: PMC10530075 DOI: 10.1126/sciadv.adi3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Genetic assimilation is the evolutionary process by which an environmentally induced phenotype becomes genetically encoded and constitutive. Genetic assimilation has been proposed as a concluding step in environmental adaptation, but its prevalence has not been systematically investigated. Analyzing transcriptomic data collected upon reciprocal transplant, we address this question in the experimental evolution, domestication, or natural evolution of seven diverse species. We find that genetic assimilation of environment-induced gene expression is the exception rather than the rule and that substantially more genes retain than lose their expression plasticity upon organismal adaptations to new environments. The probability of genetic assimilation of gene expression decreases with the expression level and number of transcription factors controlling the gene, suggesting that genetic assimilation results primarily from passive losses of gene regulations that are not mutationally robust. Hence, for gene expression, our findings argue against the purported generality or importance of genetic assimilation to environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
10
|
Fausett SR, Sandjak A, Billard B, Braendle C. Higher-order epistasis shapes natural variation in germ stem cell niche activity. Nat Commun 2023; 14:2824. [PMID: 37198172 DOI: 10.1038/s41467-023-38527-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase-but instead further reduced-PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.
Collapse
Affiliation(s)
- Sarah R Fausett
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Asma Sandjak
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
11
|
Whiten A. Cultural evolution in the science of culture and cultural evolution. Phys Life Rev 2023; 45:31-51. [PMID: 37003251 DOI: 10.1016/j.plrev.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
My critical review [1] elicited a welcome diversity of perspectives across the 12 commentaries now published [2-13]. In total 28 co-authors were inspired to contribute. In addition to engaging with the critical perspectives of my review, several of the commentaries take the debates and discussions into insightful and potentially important supplementary domains that I highlight in what follows. I have extracted a number of major themes in which I detected overlaps in the foci of different commentaries, and I use these to organise my replies. I hope that our shared efforts will constitute some degree of 'cultural evolution' in our science, as suggested in the title of this reply to commentaries.
Collapse
Affiliation(s)
- Andrew Whiten
- Centre for Social Learning and Cognitive Evolution, School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK.
| |
Collapse
|
12
|
Grézal G, Spohn R, Méhi O, Dunai A, Lázár V, Bálint B, Nagy I, Pál C, Papp B. Plasticity and Stereotypic Rewiring of the Transcriptome Upon Bacterial Evolution of Antibiotic Resistance. Mol Biol Evol 2023; 40:7013728. [PMID: 36718533 PMCID: PMC9927579 DOI: 10.1093/molbev/msad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
Collapse
Affiliation(s)
- Gábor Grézal
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Translational Microbiology Research Lab, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary,Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | | |
Collapse
|
13
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Tokorhabditis tauri n. sp. and T. atripennis n. sp. (Rhabditida: Rhabditidae), isolated from Onthophagus dung beetles (Coleoptera: Scarabaeidae) from the Eastern USA and Japan. J Nematol 2022; 54:20220028. [PMID: 36060476 PMCID: PMC9400524 DOI: 10.2478/jofnem-2022-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Two new species of Tokorhabditis, T. tauri n. sp. and T. atripennis n. sp., which were isolated from multiple Onthophagus species in North America and from O. atripennis in Japan, respectively, are described. The new species are each diagnosed by characters of the male tail and genitalia, in addition to molecular barcode differences that were previously reported. The description of T. tauri n. sp. expands the suite of known nematode associates of O. taurus, promoting ecological studies using a beetle that is an experimental model for insect–nematode–microbiota interactions in a semi-natural setting. Furthermore, our description of a third Tokorhabditis species, T. atripennis n. sp., sets up a comparative model for such ecological interactions, as well as other phenomena as previously described for T. tufae, including maternal care through obligate vivipary, the evolution of reproductive mode, and extremophilic living.
Collapse
|
15
|
Oomen RA, Hutchings JA. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J Anim Ecol 2022; 91:1073-1087. [PMID: 35445402 PMCID: PMC9325537 DOI: 10.1111/1365-2656.13707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Genomic reaction norms represent the range of gene expression phenotypes (usually mRNA transcript levels) expressed by a genotype along an environmental gradient. Reaction norms derived from common‐garden experiments are powerful approaches for disentangling plastic and adaptive responses to environmental change in natural populations. By treating gene expression as a phenotype in itself, genomic reaction norms represent invaluable tools for exploring causal mechanisms underlying organismal responses to climate change across multiple levels of biodiversity. Our goal is to provide the context, framework and motivation for applying genomic reaction norms to study the responses of natural populations to climate change. Here, we describe the utility of integrating genomics with common‐garden‐gradient experiments under a reaction norm analytical framework to answer fundamental questions about phenotypic plasticity, local adaptation, their interaction (i.e. genetic variation in plasticity) and future adaptive potential. An experimental and analytical framework for constructing and analysing genomic reaction norms is presented within the context of polygenic climate change responses of structured populations with gene flow. Intended for a broad eco‐evo readership, we first briefly review adaptation with gene flow and the importance of understanding the genomic basis and spatial scale of adaptation for conservation and management of structured populations under anthropogenic change. Then, within a high‐dimensional reaction norm framework, we illustrate how to distinguish plastic, differentially expressed (difference in reaction norm intercepts) and differentially plastic (difference in reaction norm slopes) genes, highlighting the areas of opportunity for applying these concepts. We conclude by discussing how genomic reaction norms can be incorporated into a holistic framework to understand the eco‐evolutionary dynamics of climate change responses from molecules to ecosystems. We aim to inspire researchers to integrate gene expression measurements into common‐garden experimental designs to investigate the genomics of climate change responses as sequencing costs become increasingly accessible.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| | - Jeffrey A Hutchings
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
16
|
Levis NA, Ragsdale EJ. Linking Molecular Mechanisms and Evolutionary Consequences of Resource Polyphenism. Front Integr Neurosci 2022; 16:805061. [PMID: 35210995 PMCID: PMC8861301 DOI: 10.3389/fnint.2022.805061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Resource polyphenism-the occurrence of environmentally induced, discrete, and intraspecific morphs showing differential niche use-is taxonomically widespread and fundamental to the evolution of ecological function where it has arisen. Despite longstanding appreciation for the ecological and evolutionary significance of resource polyphenism, only recently have its proximate mechanisms begun to be uncovered. Polyphenism switches, especially those influencing and influenced by trophic interactions, offer a route to integrating proximate and ultimate causation in studies of plasticity, and its potential influence on evolution more generally. Here, we use the major events in generalized polyphenic development as a scaffold for linking the molecular mechanisms of polyphenic switching with potential evolutionary outcomes of polyphenism and for discussing challenges and opportunities at each step in this process. Not only does the study of resource polyphenism uncover interesting details of discrete plasticity, it also illuminates and informs general principles at the intersection of development, ecology, and evolution.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | |
Collapse
|
17
|
Scharf A, Pohl F, Egan BM, Kocsisova Z, Kornfeld K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front Cell Dev Biol 2021; 9:718522. [PMID: 34604218 PMCID: PMC8481778 DOI: 10.3389/fcell.2021.718522] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aging animals display a broad range of progressive degenerative changes, and one of the most fascinating is the decline of female reproductive function. In the model organism Caenorhabditis elegans, hermaphrodites reach a peak of progeny production on day 2 of adulthood and then display a rapid decline; progeny production typically ends by day 8 of adulthood. Since animals typically survive until day 15 of adulthood, there is a substantial post reproductive lifespan. Here we review the molecular and cellular changes that occur during reproductive aging, including reductions in stem cell number and activity, slowing meiotic progression, diminished Notch signaling, and deterioration of germ line and oocyte morphology. Several interventions have been identified that delay reproductive aging, including mutations, drugs and environmental factors such as temperature. The detailed description of reproductive aging coupled with interventions that delay this process have made C. elegans a leading model system to understand the mechanisms that drive reproductive aging. While reproductive aging has dramatic consequences for individual fertility, it also has consequences for the ecology of the population. Population dynamics are driven by birth and death, and reproductive aging is one important factor that influences birth rate. A variety of theories have been advanced to explain why reproductive aging occurs and how it has been sculpted during evolution. Here we summarize these theories and discuss the utility of C. elegans for testing mechanistic and evolutionary models of reproductive aging.
Collapse
Affiliation(s)
- Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian M Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
19
|
Sasaki MC, Dam HG. Negative relationship between thermal tolerance and plasticity in tolerance emerges during experimental evolution in a widespread marine invertebrate. Evol Appl 2021; 14:2114-2123. [PMID: 34429752 PMCID: PMC8372069 DOI: 10.1111/eva.13270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
Whether populations can adapt to predicted climate change conditions, and how rapidly, are critical questions for the management of natural systems. Experimental evolution has become an important tool to answer these questions. In order to provide useful, realistic insights into the adaptive response of populations to climate change, there needs to be careful consideration of how genetic differentiation and phenotypic plasticity interact to generate observed phenotypic changes. We exposed three populations of the widespread copepod Acartia tonsa (Crustacea) to chronic, sublethal temperature selection for 15 generations. We generated thermal survivorship curves at regular intervals both during and after this period of selection to track the evolution of thermal tolerance. Using reciprocal transplants between ambient and warming conditions, we also tracked changes in the strength of phenotypic plasticity in thermal tolerance. We observed significant increases in thermal tolerance in the Warming lineages, while plasticity in thermal tolerance was strongly reduced. We suggest these changes are driven by a negative relationship between thermal tolerance and plasticity in thermal tolerance. Our results indicate that adaptation to warming through an increase in thermal tolerance might not reduce vulnerability to climate change if the increase comes at the expense of tolerance plasticity. These results illustrate the importance of considering changes in both a trait of interest and the trait plasticity during experimental evolution.
Collapse
Affiliation(s)
| | - Hans G. Dam
- Department of Marine SciencesUniversity of ConnecticutGrotonCTUSA
| |
Collapse
|
20
|
Rudolf AM, Wu Q, Li L, Wang J, Huang Y, Togo J, Liechti C, Li M, Niu C, Nie Y, Wei F, Speakman JR. A single nucleotide mutation in the dual-oxidase 2 ( DUOX2) gene causes some of the panda's unique metabolic phenotypes. Natl Sci Rev 2021; 9:nwab125. [PMID: 35251670 PMCID: PMC8890364 DOI: 10.1093/nsr/nwab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/11/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is an iconic bear native to China, famous for eating almost exclusively bamboo. This unusual dietary behavior for a carnivore is enabled by several key adaptations including low physical activity, reduced organ sizes and hypothyroidism leading to lowered energy expenditure. These adaptive phenotypes have been hypothesized to arise from a panda-unique single-nucleotide mutation in the dual-oxidase 2 (DUOX2) gene, involved in thyroid hormone synthesis. To test this hypothesis, we created genome-edited mice carrying the same point mutation as the panda and investigated its effect on metabolic phenotype. Homozygous mice were 27% smaller than heterozygous and wild-type ones, had 13% lower body mass-adjusted food intake, 55% decreased physical activity, lower mass of kidneys (11%) and brain (5%), lower serum thyroxine (T4: 36%), decreased absolute (12%) and mass-adjusted (5%) daily energy expenditure, and altered gut microbiota. Supplementation with T4 reversed the effects of the mutation. This work uses a state-of-the-art genome editing approach to demonstrate the link between a single-nucleotide mutation in a key endocrine-related gene and profound adaptive changes in the metabolic phenotype, with great importance in ecology and evolution.
Collapse
Affiliation(s)
- Agata M Rudolf
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Li
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Huang
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jacques Togo
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Christopher Liechti
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Min Li
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonggang Nie
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwen Wei
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Centre of Excellence for Animal Ecology and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - John R Speakman
- State Key Laboratory of Molecular Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Centre of Excellence for Animal Ecology and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|