1
|
Jameson JW. Buzzfindr: Automating the detection of feeding buzzes in bat echolocation recordings. PLoS One 2024; 19:e0306063. [PMID: 39163272 PMCID: PMC11335113 DOI: 10.1371/journal.pone.0306063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/10/2024] [Indexed: 08/22/2024] Open
Abstract
Quantification of bat communities and habitat heavily rely on non-invasive acoustic bat surveys the scope of which has greatly amplified with advances in remote monitoring technologies. Despite the unprecedented amount of acoustic data being collected, analysis of these data is often limited to simple species classification which provides little information on habitat function. Feeding buzzes, the rapid sequences of echolocation pulses emitted by bats during the terminal phase of prey capture, have historically been used to evaluate foraging habitat quality. Automated identification of feeding buzzes in recordings could benefit conservation by helping identify critical foraging habitat. I tested if detection of feeding buzzes in recordings could be automated with bat recordings from Ontario, Canada. Data were obtained using three different recording devices. The signal detection method involved sequentially scanning narrow frequency bands with the "Bioacoustics" R package signal detection algorithm, and extracting temporal and signal strength parameters from detections. Buzzes were best characterized by the standard deviation of the time between consecutive pulses, the average pulse duration, and the average pulse signal-to-noise ratio. Classification accuracy was highest with artificial neural networks and random forest algorithms. I compared each model's receiver operating characteristic curves and random forest provided better control over the false-positive rate so it was retained as the final model. When tested on a new dataset, buzzfindr's overall accuracy was 93.4% (95% CI: 91.5%- 94.9%). Overall accuracy was not affected by recording device type or species frequency group. Automated detection of feeding buzzes will facilitate their integration in the analytical workflow of acoustic bat studies to improve inferences on habitat use and quality.
Collapse
|
2
|
French F, Bwye P, Carrigan L, Coe JC, Kelly R, Leek T, Lynch EC, Mahan E, Mingee C. Welfare and Enrichment of Managed Nocturnal Species, Supported by Technology. Animals (Basel) 2024; 14:2378. [PMID: 39199912 PMCID: PMC11350655 DOI: 10.3390/ani14162378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This paper addresses the potential for technology to support husbandry and enrichment opportunities that enhance the welfare of zoo and sanctuary-housed nocturnal and crepuscular species. This topic was investigated through the medium of a multidisciplinary workshop (Moon Jam) that brought together species experts, zoo designers, Animal-Computer Interaction researchers and post-graduate students in collaborative discussions and design sessions. We explain the context through an examination of existing research and current practices, and report on specific challenges raised and addressed during the Moon Jam, highlighting and discussing key themes that emerged. Finally, we offer a set of guidelines to support the integration of technology into the design of animal husbandry and enrichment that support wellbeing, to advance the best practices in keeping and managing nocturnal and crepuscular animals.
Collapse
Affiliation(s)
- Fiona French
- School of Computing and Digital Media, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Paige Bwye
- Bristol Zoological Society, Hollywood Lane, Bristol BS10 7TW, UK;
| | | | | | - Robert Kelly
- Centre for Research in Animal Behaviour, University of Exeter, Rennes Drive, Exeter EX4 4RN, UK;
| | - Tiff Leek
- Faculty of Science, Technology, Engineering and Maths, The Open University, Milton Keynes MK7 6AA, UK;
| | - Emily C. Lynch
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| | - Eric Mahan
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| | - Cathy Mingee
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| |
Collapse
|
3
|
Pedersen MB, Beedholm K, Hubancheva A, Koseva K, Uebel AS, Hochradel K, Madsen PT, Stidsholt L. Clutter resilience via auditory stream segregation in echolocating greater mouse-eared bats. J Exp Biol 2024; 227:jeb246889. [PMID: 38841890 DOI: 10.1242/jeb.246889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Bats use echolocation to navigate and hunt in darkness, and must in that process segregate target echoes from unwanted clutter echoes. Bats may do this by approaching a target at steep angles relative to the plane of the background, utilizing their directional transmission and receiving systems to minimize clutter from background objects, but it remains unknown how bats negotiate clutter that cannot be spatially avoided. Here, we tested the hypothesis that when movement no longer offers spatial release, echolocating bats mitigate clutter by calling at lower source levels and longer call intervals to ease auditory streaming. We trained five greater mouse-eared bats (Myotis myotis) to land on a spherical loudspeaker with two microphones attached. We used a phantom-echo setup, where the loudspeaker/target transmitted phantom clutter echoes by playing back the bats' own calls at time delays of 1, 3 and 5 ms with a virtual target strength 7 dB higher than the physical target. We show that the bats successfully landed on the target, irrespective of the clutter echo delays. Rather than decreasing their source levels, the bats used similar source level distributions in clutter and control trials. Similarly, the bats did not increase their call intervals, but instead used the same distribution of call intervals across control and clutter trials. These observations reject our hypothesis, leading us to conclude that bats display great resilience to clutter via short auditory integration times and acute auditory stream segregation rather than via biosonar adjustments.
Collapse
Affiliation(s)
- Michael B Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Kristian Beedholm
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Antoniya Hubancheva
- Acoustic and Functional Ecology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- National Museum of Natural History, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Kaloyana Koseva
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Astrid S Uebel
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Klaus Hochradel
- Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall Tirol, Austria
| | - Peter T Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Laura Stidsholt
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| |
Collapse
|
4
|
Pedersen MB, Egenhardt M, Beedholm K, Skalshøi MR, Uebel AS, Hubancheva A, Koseva K, Moss CF, Luo J, Stidsholt L, Madsen PT. Superfast Lombard response in free-flying, echolocating bats. Curr Biol 2024; 34:2509-2516.e3. [PMID: 38744283 DOI: 10.1016/j.cub.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts.1,2 Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes,3 leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.
Collapse
Affiliation(s)
| | - Martin Egenhardt
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Kristian Beedholm
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Astrid Særmark Uebel
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Antoniya Hubancheva
- Acoustic and Functional Ecology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany; National Museum of Natural History, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Kaloyana Koseva
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Departments of Neuroscience and Mechanical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinhong Luo
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Laura Stidsholt
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark; Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Peter Teglberg Madsen
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Uebel AS, Pedersen MB, Beedholm K, Stidsholt L, Skalshøi MR, Foskolos I, Madsen PT. Daubenton's bats maintain stereotypical echolocation behaviour and a lombard response during target interception in light. BMC ZOOL 2024; 9:9. [PMID: 38679717 PMCID: PMC11057132 DOI: 10.1186/s40850-024-00200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024] Open
Abstract
Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions. We trained five wild-caught bats to land on a spherical target in both silence and when exposed to broad-band noise to decrease echo detectability, while light conditions were manipulated in both spectrum and intensity. We show that during noise exposure, the bats were almost three times more likely to use multiple attempts to solve the task compared to in silent controls. Furthermore, the bats exhibited a Lombard response of 0.18 dB/dBnoise and decreased call intervals earlier in their flight during masking noise exposures compared to in silent controls. Importantly, however, these adjustments in movement and echolocation behaviour did not differ between light and dark control treatments showing that small insectivorous bats maintain the same echolocation behaviour when provided with visual cues under challenging conditions for echolocation. We therefore conclude that bat echolocation is a hard-wired sensory system with stereotyped compensation strategies to both target range and masking noise (i.e. Lombard response) irrespective of light conditions. In contrast, the adjustments of call intervals and movement strategies during noise exposure varied substantially between individuals indicating a degree of flexibility that likely requires higher order processing and perhaps vocal learning.
Collapse
Affiliation(s)
- Astrid Saermark Uebel
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | | | - Kristian Beedholm
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Laura Stidsholt
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Ilias Foskolos
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Wildlife Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Peter Teglberg Madsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Stidsholt L, Scholz C, Hermanns U, Teige T, Post M, Stapelfeldt B, Reusch C, Voigt CC. Low foraging rates drive large insectivorous bats away from urban areas. GLOBAL CHANGE BIOLOGY 2024; 30:e17063. [PMID: 38273536 DOI: 10.1111/gcb.17063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Urbanization has significant impacts on wildlife and ecosystems and acts as an environmental filter excluding certain species from local ecological communities. Specifically, it may be challenging for some animals to find enough food in urban environments to achieve a positive energy balance. Because urban environments favor small-sized bats with low energy requirements, we hypothesized that common noctules (Nyctalus noctula) acquire food at a slower rate and rely less on conspecifics to find prey in urban than in rural environments due to a low food abundance and predictable distribution of insects in urban environments. To address this, we estimated prey sizes and measured prey capture rates, foraging efforts, and the presence of conspecifics during hunting of 22 common noctule bats equipped with sensor loggers in an urban and rural environment. Even though common noctule bats hunted similar-sized prey in both environments, urban bats captured prey at a lower rate (mean: 2.4 vs. 6.3 prey attacks/min), and a lower total amount of prey (mean: 179 vs. 377 prey attacks/foraging bout) than conspecifics from rural environments. Consequently, the energy expended to capture prey was higher for common noctules in urban than in rural environments. In line with our prediction, urban bats relied less on group hunting, likely because group hunting was unnecessary in an environment where the spatial distribution of prey insects is predictable, for example, in parks or around floodlights. While acknowledging the limitations of a small sample size and low number of spatial replicates, our study suggests that scarce food resources may make urban habitats unfavorable for large bat species with higher energy requirements compared to smaller bat species. In conclusion, a lower food intake may displace larger species from urban areas making habitats with high insect biomass production key for protecting large bat species in urban environments.
Collapse
Affiliation(s)
- Laura Stidsholt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Carolin Scholz
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Tobias Teige
- Büro für faunistisch-ökologische Fachgutachten, Berlin, Germany
| | - Martin Post
- Natura-2000 Station für Fledermäuse, Förderverein Naturpark Nossentiner/Schwinzer Heide e.V., Karow, Mecklenburg-Vorpommern, Germany
| | - Bianca Stapelfeldt
- Natura-2000 Station für Fledermäuse, Förderverein Naturpark Nossentiner/Schwinzer Heide e.V., Karow, Mecklenburg-Vorpommern, Germany
| | - Christine Reusch
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
7
|
de Framond L, Beleyur T, Lewanzik D, Goerlitz HR. Calibrated microphone array recordings reveal that a gleaning bat emits low-intensity echolocation calls even in open-space habitat. J Exp Biol 2023; 226:jeb245801. [PMID: 37655585 PMCID: PMC10560550 DOI: 10.1242/jeb.245801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Echolocating bats use ultrasound for orientation and prey capture in darkness. Ultrasound is strongly attenuated in air. Consequently, aerial-hawking bats generally emit very intense echolocation calls to maximize detection range. However, call levels vary more than tenfold (>20 dB) between species and are tightly linked to the foraging strategy. The brown long-eared bat (Plecotus auritus) is a primarily gleaning, low-amplitude species that may occasionally hawk airborne prey. We used state-of-the-art calibrated acoustic 3D-localization and automated call analysis to measure P. auritus' source levels. Plecotus auritus emits echolocation calls of low amplitude (92 dB rmsSPL re. 20 µPa at 10 cm) even while flying in open-space. While P. auritus thus probably benefits from delayed evasive manoeuvres of eared insects, we propose that low-amplitude echolocation did not evolve as an adaptive countermeasure, but is limited by morphological constraints.
Collapse
Affiliation(s)
- Léna de Framond
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Thejasvi Beleyur
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Daniel Lewanzik
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Holger R. Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
8
|
de Framond L, Reininger V, Goerlitz HR. Temperate bats may alter calls to partially compensate for weather-induced changes in detection distance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2867. [PMID: 37171984 DOI: 10.1121/10.0019359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 05/14/2023]
Abstract
Echolocation is the use of self-emitted calls to probe the surrounding environment. The atmosphere strongly absorbs sound energy, particularly high frequencies, thereby limiting the sensory range of echolocating animals. Atmospheric attenuation varies with temperature and humidity, which both vary widely in the temperate zone. Since echolocating insectivorous bats rely on ultrasound to capture insects, their foraging success might decrease with seasonal and daily variations in weather. To counteract weather-induced variations in prey detection, we hypothesised that European bats decrease call frequency and increase call energy when atmospheric attenuation increases, thereby maintaining their prey detection distance. Using acoustic localisation and automated call analysis, we measured call frequency and energy in free-flying bats of three common European insectivorous species. One species, Pipistrellus nathusii/kuhlii, increased call frequency, but simultaneously decreased call energy, while the two other species (P. pipistrellus and Myotis daubentonii) did not alter call parameters. We estimated the detection distance for prey based on the recorded call parameters and prey characteristics, using a custom-developed theoretical model. None of the three species maintained prey detection distance (it decreased by 1.7 to 3.4 m) when atmospheric attenuation increased. This study contributes to a better understanding of the sensory challenges faced by animals in fluctuating environments.
Collapse
Affiliation(s)
- Léna de Framond
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Verena Reininger
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| |
Collapse
|
9
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
10
|
Stidsholt L, Hubancheva A, Greif S, Goerlitz HR, Johnson M, Yovel Y, Madsen PT. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability. eLife 2023; 12:e84190. [PMID: 37070239 PMCID: PMC10112884 DOI: 10.7554/elife.84190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023] Open
Abstract
Predators that target multiple prey types are predicted to switch foraging modes according to prey profitability to increase energy returns in dynamic environments. Here, we use bat-borne tags and DNA metabarcoding of feces to test the hypothesis that greater mouse-eared bats make immediate foraging decisions based on prey profitability and changes in the environment. We show that these bats use two foraging strategies with similar average nightly captures of 25 small, aerial insects and 29 large, ground-dwelling insects per bat, but with much higher capture success in the air (76%) vs ground (30%). However, owing to the 3-20 times larger ground prey, 85% of the nightly food acquisition comes from ground prey despite the 2.5 times higher failure rates. We find that most bats use the same foraging strategy on a given night suggesting that bats adapt their hunting behavior to weather and ground conditions. We conclude that these bats use high risk-high gain gleaning of ground prey as a primary foraging tactic, but switch to aerial hunting when environmental changes reduce the profitability of ground prey, showing that prey switching matched to environmental dynamics plays a key role in covering the energy intake even in specialized predators.
Collapse
Affiliation(s)
- Laura Stidsholt
- Zoophysiology, Department of Bioscience, Aarhus UniversityAarhusDenmark
| | - Antoniya Hubancheva
- Acoustic and Functional Ecology, Max Planck Institute for Biological IntelligenceSeewiesenGermany
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Stefan Greif
- Acoustic and Functional Ecology, Max Planck Institute for Biological IntelligenceSeewiesenGermany
- Department of Zoology, Tel Aviv UniversityTel AvivIsrael
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Mark Johnson
- Zoophysiology, Department of Bioscience, Aarhus UniversityAarhusDenmark
| | - Yossi Yovel
- Department of Zoology, Tel Aviv UniversityTel AvivIsrael
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus UniversityAarhusDenmark
| |
Collapse
|
11
|
Jespersen C, Docherty D, Hallam J, Albertsen C, Jakobsen L. Drone exploration of bat echolocation: A UAV-borne multimicrophone array to study bat echolocation. Ecol Evol 2022; 12:e9577. [PMID: 36479036 PMCID: PMC9719081 DOI: 10.1002/ece3.9577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
Multimicrophone array techniques offer crucial insight into bat echolocation, yet they severely undersample the environments bats operate in as they are limited in geographic placement and mobility. UAVs are excellent candidates to greatly increase the environments in which such arrays can be deployed, but the impact of UAV noise on recording quality and the UAV's behavioral impact on the bats may affect usability. We developed a UAV-borne multimicrophone setup capable of recording bat echolocation across diverse environments. We quantify and mitigate the impact of UAV noise on the recording setup and test the recording capability of the array by recording four common Danish bat species: Pipistrellus pygmaeus, Myotis daubentonii, Eptesicus serotinus, and Nyctalus noctula. The UAV produces substantial noise at ultrasonic frequencies relevant to many bat species. However, suspending the array 30 m below the UAV attenuates the noise to levels below the self-noise of our recording system at 20 kHz and above, and we successfully record and acoustically localize all four bat species. The behavioral impact of the UAV is minimal as all four species approached the array to within 1 m and all emitted recordable feeding buzzes. UAV-borne multimicrophone arrays will allow us to quantify bat echolocation in hitherto unexplored habitats and provide crucial insight into how bats operate their sonar across their entire natural habitat.
Collapse
Affiliation(s)
| | - David Docherty
- Maersk McKinney Moller InstituteUniversity of Southern DenmarkOdense MDenmark
| | - John Hallam
- Maersk McKinney Moller InstituteUniversity of Southern DenmarkOdense MDenmark
| | - Carsten Albertsen
- Maersk McKinney Moller InstituteUniversity of Southern DenmarkOdense MDenmark
| | - Lasse Jakobsen
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| |
Collapse
|
12
|
Zaitseva KA, Korolev VI, Akhi AV, Akhi AA. Adaptation of dolphins’ ( Tursiops truncatus) location signals when searching for and identifying objects hidden by sea sediments. BIOACOUSTICS 2021. [DOI: 10.1080/09524622.2021.1994467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. A. Zaitseva
- Department of Sensory System Evolution, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - V. I. Korolev
- Department of Sensory System Evolution, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A. V. Akhi
- Department of Sensory System Evolution, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A. A. Akhi
- Department of Computer Technologies, St. Petersburg State University of IT, Mechanics, and Optics, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Vance H, Madsen PT, Aguilar de Soto N, Wisniewska DM, Ladegaard M, Hooker S, Johnson M. Echolocating toothed whales use ultra-fast echo-kinetic responses to track evasive prey. eLife 2021; 10:68825. [PMID: 34696826 PMCID: PMC8547948 DOI: 10.7554/elife.68825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Visual predators rely on fast-acting optokinetic responses to track and capture agile prey. Most toothed whales, however, rely on echolocation for hunting and have converged on biosonar clicking rates reaching 500/s during prey pursuits. If echoes are processed on a click-by-click basis, as assumed, neural responses 100× faster than those in vision are required to keep pace with this information flow. Using high-resolution biologging of wild predator-prey interactions, we show that toothed whales adjust clicking rates to track prey movement within 50–200 ms of prey escape responses. Hypothesising that these stereotyped biosonar adjustments are elicited by sudden prey accelerations, we measured echo-kinetic responses from trained harbour porpoises to a moving target and found similar latencies. High biosonar sampling rates are, therefore, not supported by extreme speeds of neural processing and muscular responses. Instead, the neurokinetic response times in echolocation are similar to those of tracking responses in vision, suggesting a common neural underpinning. In the animal world, split-second decisions determine whether a predator eats, or its prey survives. There is a strong evolutionary advantage to fast reacting brains and bodies. For example, the eye muscles of hunting cheetahs must lock on to a gazelle and keep track of it, no matter how quickly or unpredictably it moves. In fact, in monkeys and primates, these muscles can react to sudden movements in as little as 50 milliseconds – faster than the blink of an eye. But what about animals that do not rely on vision to hunt? To find food at night or in the deep ocean, whales and porpoises make short ultrasonic sounds, or ‘clicks’, and then listen for returning echoes. As they close in on a prey, they need to click faster to get quicker updates on its location. What is unclear is how fast they react to the echoes. Just before a kill, a harbour porpoise can click over 500 times a second: if they wait for the echo from one click before making the next one, they would need responses 100 times faster than human eyes. Exploring this topic is difficult, as it requires tracking predator and prey at the same time. Vance et al. took up the challenge by building sound and movement recorders that attach to whales with suction cups. These were used on two different hunters: deep-diving beaked whales and shallow-hunting harbour porpoises. Both species adapted their click rate depending on how far they were from their prey, but their response times were similar to visual responses in monkeys and humans. This means that whales and porpoises do not act on each echo before clicking again: instead, they respond to groups of tens of clicks at a time. This suggests that their brains may be wired in much the same way as the ones of visual animals. In the ocean, increased human activity creates a dangerous noise pollution that disrupts the delicate hunting mechanism of whales and porpoises. Better understanding how these animals find their food may therefore help conservation efforts.
Collapse
Affiliation(s)
- Heather Vance
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natacha Aguilar de Soto
- BIOECOMAC, Department of Animal Biology, Edaphology and Geology, University of La Laguna, La Laguna, Spain
| | | | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Sascha Hooker
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Malinka CE, Rojano-Doñate L, Madsen PT. Directional biosonar beams allow echolocating harbour porpoises to actively discriminate and intercept closely spaced targets. J Exp Biol 2021; 224:271830. [PMID: 34387665 DOI: 10.1242/jeb.242779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Echolocating toothed whales face the problem that high sound speeds in water mean that echoes from closely spaced targets will arrive at time delays within their reported auditory integration time of some 264 µs. Here, we test the hypothesis that echolocating harbour porpoises cannot resolve and discriminate targets within a clutter interference zone given by their integration time. To do this, we trained two harbour porpoises (Phocoena phocoena) to actively approach and choose between two spherical targets at four varying inter-target distances (13.5, 27, 56 and 108 cm) in a two-alternative forced-choice task. The free-swimming, blindfolded porpoises were tagged with a sound and movement tag (DTAG4) to record their echoic scene and acoustic outputs. The known ranges between targets and the porpoise, combined with the sound levels received on target-mounted hydrophones revealed how the porpoises controlled their acoustic gaze. When targets were close together, the discrimination task was more difficult because of smaller echo time delays and lower echo level ratios between the targets. Under these conditions, buzzes were longer and started from farther away, source levels were reduced at short ranges, and the porpoises clicked faster, scanned across the targets more, and delayed making their discrimination decision until closer to the target. We conclude that harbour porpoises can resolve and discriminate closely spaced targets, suggesting a clutter rejection zone much shorter than their auditory integration time, and that such clutter rejection is greatly aided by spatial filtering with their directional biosonar beam.
Collapse
Affiliation(s)
- Chloe E Malinka
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
15
|
Stidsholt L, Johnson M, Goerlitz HR, Madsen PT. Wild bats briefly decouple sound production from wingbeats to increase sensory flow during prey captures. iScience 2021; 24:102896. [PMID: 34401675 PMCID: PMC8355945 DOI: 10.1016/j.isci.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 10/28/2022] Open
Abstract
Active sensing animals such as echolocating bats produce the energy with which they probe their environment. The intense echolocation calls of bats are energetically expensive, but their cost can be reduced by synchronizing the exhalations needed to vocalize to wingbeats. Here, we use sound-and-movement recording tags to investigate how wild bats balance efficient sound production with information needs during foraging and navigation. We show that wild bats prioritize energy efficiency over sensory flow when periodic snapshots of the acoustic scene are sufficient during travel and search. Rapid calls during tracking and interception of close prey are decoupled from the wingbeat but are weaker and comprise <2% of all calls during a night of hunting. The limited use of fast sonar sampling provides bats with high information update rates during critical hunting moments but adds little to their overall costs of sound production despite the inefficiency of decoupling calls from wingbeats.
Collapse
Affiliation(s)
- Laura Stidsholt
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Gessinger G, Page R, Wilfert L, Surlykke A, Brinkløv S, Tschapka M. Phylogenetic Patterns in Mouth Posture and Echolocation Emission Behavior of Phyllostomid Bats. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While phyllostomid bats show an impressive range of feeding habits, most of them emit highly similar echolocation calls. Due to the presence of an often prominent noseleaf, it has long been assumed that all phyllostomids emit echolocation calls exclusively through the nostrils rather than through the mouth. However, photo evidence documents also phyllostomid bats flying with an opened mouth. We hypothesized that all phyllostomid species emit echolocation calls only through the nostrils and therefore fly consistently with a closed mouth, and that observations of an open mouth should be a rare and random behavior among individuals and species. Using a high-speed camera and standardized conditions in a flight cage, we screened 40 phyllostomid species. Behavior varied distinctly among the species and mouth posture shows a significant phylogenetic signal. Bats of the frugivorous subfamilies Rhinophyllinae and Carolliinae, the nectarivorous subfamilies Glossophaginae and Lonchophyllinae, and the sanguivorous subfamily Desmodontinae all flew consistently with open mouths. So did the animalivorous subfamilies Glyphonycterinae, Micronycterinae and Phyllostominae, with the notable exception of species in the omnivorous genus Phyllostomus, which consistently flew with mouths closed. Bats from the frugivorous subfamily Stenodermatinae also flew exclusively with closed mouths with the single exception of the genus Sturnira, which is the sister clade to all other stenodermatine species. Further, head position angles differed significantly between bats echolocating with their mouth closed and those echolocating with their mouths opened, with closed-mouth phyllostomids pointing only the nostrils in the direction of flight and open-mouth phyllostomids pointing both the nostrils and mouth gape in the direction of flight. Ancestral trait reconstruction showed that the open mouth mode is the ancestral state within the Phyllostomidae. Based on the observed behavioral differences, we suggest that phyllostomid bats are not all nasal emitters as previously thought and discuss possible reasons. Further experiments, such as selectively obstructing sound emission through nostrils or mouth, respectively, will be necessary to clarify the actual source, plasticity and ecological relevance of sound emission of phyllostomid bats flying with their mouths open.
Collapse
|