1
|
Kim JA, Im S, Lim J, Hong JM, Ihn HJ, Bae JS, Kim JE, Bae YC, Park EK. The guanine nucleotide exchange factor DOCK5 negatively regulates osteoblast differentiation and BMP2-induced bone regeneration via the MKK3/6 and p38 signaling pathways. Exp Mol Med 2025:10.1038/s12276-024-01372-2. [PMID: 39741184 DOI: 10.1038/s12276-024-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 01/02/2025] Open
Abstract
DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models. C21 significantly enhanced osteoblast differentiation and mineral deposition in mouse MC3T3-E1 cells and in human and mouse BMSCs. Dock5 knockout (KO) mice exhibited increased bone mass and mineral apposition rate, with their BMSCs showing enhanced osteoblast differentiation. Calvarial defect and ectopic bone formation models demonstrated significant induction of bone regeneration in Dock5 KO mice compared to wild-type (WT) mice. Moreover, DOCK5 inhibition by C21 in WT mice enhanced BMP2-induced subcutaneous ectopic bone formation. The mechanism responsible for enhanced bone formation induced by DOCK5 inhibition may involve the suppression of Rac1 under TAK1, accompanied by the activation of MKK3/6 and p38 induced by BMP2. These findings strongly suggest that DOCK5 negatively regulates osteoblast differentiation and bone regeneration through signaling pathways involving TAK1, MKK3/6, and p38, providing new insights into potential therapeutic strategies for bone regeneration.
Collapse
Affiliation(s)
- Ju Ang Kim
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Soomin Im
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jiwon Lim
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jung Min Hong
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
2
|
Cresca S, Parise A, Magistrato A. Assessing the Mechanism of Rac1b: An All-Atom Simulation Study of the Alternative Spliced Variant of Rac1 Small Rho GTPase. J Chem Inf Model 2024; 64:9474-9486. [PMID: 39632743 DOI: 10.1021/acs.jcim.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Rho GTPase family plays a key role in cell migration, cytoskeletal dynamics, and intracellular signaling. Rac1 and its splice variant Rac1b, characterized by the insertion of an Extraloop, are frequently associated with cancer. These small GTPases switch between an active GTP-bound state and an inactive GDP-bound state, a process that is regulated by specific protein modulators. Among them, the Guanine nucleotide exchange factor (GEF) protein DOCK5 specifically targets Rho GTPases, promoting their activation by facilitating the exchange of GDP for GTP. In this study, we performed cumulative 10-μs-long all-atom molecular dynamics simulations of Rac1 and Rac1b, in isolation and in complex with DOCK5 and ELMO1, to investigate the impact of the Rac1b Extraloop. Our findings reveal that this Extraloop decreases the GDP residence time as compared to Rac1, mimicking the effect of accelerated GDP/GTP exchange induced by DOCK5. Furthermore, both Rac1b Extraloop and the ELMO1 protein stabilize the GTPase/DOCK5 complex, contributing to facilitate GDP dissociation. This shifts the balance between the GPT- and GDP-bound state of Rac1b toward the active GTP-bound state, sending a prooncogenic signal. Besides broadening our understanding of the biological functions of small Rho GTPases, this study provides key information to exploit a previously unexplored therapeutic niche to counter Rac1b-associated cancer.
Collapse
Affiliation(s)
- Sofia Cresca
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
3
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
4
|
Kukimoto-Niino M, Katsura K, Ishizuka-Katsura Y, Mishima-Tsumagari C, Yonemochi M, Inoue M, Nakagawa R, Kaushik R, Zhang KYJ, Shirouzu M. RhoG facilitates a conformational transition in the guanine nucleotide exchange factor complex DOCK5/ELMO1 to an open state. J Biol Chem 2024; 300:107459. [PMID: 38857861 PMCID: PMC11267001 DOI: 10.1016/j.jbc.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan.
| | - Kazushige Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yoshiko Ishizuka-Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan.
| |
Collapse
|
5
|
Venkatachalam T, Mannimala S, Pulijala Y, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that may target different GTPases. PLoS Genet 2024; 20:e1011330. [PMID: 39083711 PMCID: PMC11290852 DOI: 10.1371/journal.pgen.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yeshaswi Pulijala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
6
|
Bhat AA, Gupta G, Dahiya R, Thapa R, Gahtori A, Shahwan M, Jakhmola V, Tiwari A, Kumar M, Dureja H, Singh SK, Dua K, Kumarasamy V, Subramaniyan V. CircRNAs: Pivotal modulators of TGF-β signalling in cancer pathogenesis. Noncoding RNA Res 2024; 9:277-287. [PMID: 38505309 PMCID: PMC10945146 DOI: 10.1016/j.ncrna.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-β (TGF-β) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-β pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-β signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-β modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-β signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-β is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-β signalling landscape.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Archana Gahtori
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, 248001, Uttarakhand, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, (U.P.), 244102, India
| | - Mahish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Bailly C, Degand C, Laine W, Sauzeau V, Kluza J. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions. Life Sci 2024; 342:122510. [PMID: 38387701 DOI: 10.1016/j.lfs.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.
Collapse
Affiliation(s)
- Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France.
| | - Claire Degand
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - William Laine
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Jérôme Kluza
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
8
|
Herbst C, Bothe V, Wegler M, Axer-Schaefer S, Audebert-Bellanger S, Gecz J, Cogne B, Feldman HB, Horn AHC, Hurst ACE, Kelly MA, Kruer MC, Kurolap A, Laquerriere A, Li M, Mark PR, Morawski M, Nizon M, Pastinen T, Polster T, Saugier-Veber P, SeSong J, Sticht H, Stieler JT, Thifffault I, van Eyk CL, Marcorelles P, Vezain-Mouchard M, Abou Jamra R, Oppermann H. Heterozygous loss-of-function variants in DOCK4 cause neurodevelopmental delay and microcephaly. Hum Genet 2024; 143:455-469. [PMID: 38526744 PMCID: PMC11043173 DOI: 10.1007/s00439-024-02655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024]
Abstract
Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.
Collapse
Affiliation(s)
- Charlotte Herbst
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Viktoria Bothe
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Meret Wegler
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Susanne Axer-Schaefer
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anselm H C Horn
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa A Kelly
- HudsonAlpha Clinical Services Lab, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital University of Arizona College of Medicine, Phoenix, USA
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Annie Laquerriere
- Department of Anatomy, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Megan Li
- Invitae Corp, San Francisco, CA, USA
| | - Paul R Mark
- Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Markus Morawski
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Tilman Polster
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Jang SeSong
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens T Stieler
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Isabelle Thifffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Myriam Vezain-Mouchard
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Anandachar MS, Roy S, Sinha S, Boadi A, Katkar GD, Ghosh P. Diverse gut pathogens exploit the host engulfment pathway via a conserved mechanism. J Biol Chem 2023; 299:105390. [PMID: 37890785 PMCID: PMC10696401 DOI: 10.1016/j.jbc.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing "effector" proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here, we define the host component of the molecular arms race as an evolutionarily conserved polar "hot spot" on the PH domain of ELMO1 (Engulfment and Cell Motility protein 1), which is targeted by diverse WxxxE effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the "patch" directly binds all WxxxE effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic Escherichia coli). Using an integrated SifA-host protein-protein interaction network, in silico network perturbation, and functional studies, we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hot spot on ELMO1 suggests that the WxxxE effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in coevolved molecular adaptations between pathogens and the host, and its disruption may serve as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahitha Shree Anandachar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA; Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Agyekum Boadi
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA; Department of Medicine, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
10
|
Venkatachalam T, Mannimala S, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that target different GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560868. [PMID: 37873140 PMCID: PMC10592980 DOI: 10.1101/2023.10.04.560868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. A candidate GEF region on CED-5 faces towards Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies showed the GEF and GAP functions act on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
11
|
Anandachar MS, Roy S, Sinha S, Agyekum B, Ibeawuchi SR, Gementera H, Amamoto A, Katkar GD, Ghosh P. Diverse Gut Pathogens Exploit the Host Engulfment Pathway via a Conserved Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536168. [PMID: 37066267 PMCID: PMC10104235 DOI: 10.1101/2023.04.09.536168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing effector proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here we define the host component of the molecular arms race as an evolutionarily conserved polar hotspot on the PH-domain of ELMO1 (Engulfment and Cell Motility1), which is targeted by diverse WxxxE-effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the patch directly binds all WxxxE-effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic E. coli). Using an integrated SifA-host protein-protein interaction (PPI) network, in-silico network perturbation, and functional studies we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hotpot on ELMO1 suggests that the WxxxE-effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in co-evolved molecular adaptations between pathogens and the host and its disruption may serve as a therapeutic strategy.
Collapse
|
12
|
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T. Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov 2023; 9:166. [PMID: 37188749 PMCID: PMC10184973 DOI: 10.1038/s41420-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Dedicator of cytokinesis 3 (DOCK3) is an atypical member of the guanine nucleotide exchange factors (GEFs) and plays important roles in neurite outgrowth. DOCK3 forms a complex with Engulfment and cell motility protein 1 (Elmo1) and effectively activates Rac1 and actin dynamics. In this study, we screened 462,169 low-molecular-weight compounds and identified the hit compounds that stimulate the interaction between DOCK3 and Elmo1, and neurite outgrowth in vitro. Some of the derivatives from the hit compound stimulated neuroprotection and axon regeneration in a mouse model of optic nerve injury. Our findings suggest that the low-molecular-weight DOCK3 activators could be a potential therapeutic candidate for treating axonal injury and neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Jun Takeyama
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Hirokazu Ishikawa
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
13
|
Barry A, McNulty MT, Jia X, Gupta Y, Debiec H, Luo Y, Nagano C, Horinouchi T, Jung S, Colucci M, Ahram DF, Mitrotti A, Sinha A, Teeninga N, Jin G, Shril S, Caridi G, Bodria M, Lim TY, Westland R, Zanoni F, Marasa M, Turudic D, Giordano M, Gesualdo L, Magistroni R, Pisani I, Fiaccadori E, Reiterova J, Maringhini S, Morello W, Montini G, Weng PL, Scolari F, Saraga M, Tasic V, Santoro D, van Wijk JAE, Milošević D, Kawai Y, Kiryluk K, Pollak MR, Gharavi A, Lin F, Simœs E Silva AC, Loos RJF, Kenny EE, Schreuder MF, Zurowska A, Dossier C, Ariceta G, Drozynska-Duklas M, Hogan J, Jankauskiene A, Hildebrandt F, Prikhodina L, Song K, Bagga A, Cheong H, Ghiggeri GM, Vachvanichsanong P, Nozu K, Lee D, Vivarelli M, Raychaudhuri S, Tokunaga K, Sanna-Cherchi S, Ronco P, Iijima K, Sampson MG. Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome. Nat Commun 2023; 14:2481. [PMID: 37120605 PMCID: PMC10148875 DOI: 10.1038/s41467-023-37985-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/10/2023] [Indexed: 05/01/2023] Open
Abstract
Pediatric steroid-sensitive nephrotic syndrome (pSSNS) is the most common childhood glomerular disease. Previous genome-wide association studies (GWAS) identified a risk locus in the HLA Class II region and three additional independent risk loci. But the genetic architecture of pSSNS, and its genetically driven pathobiology, is largely unknown. Here, we conduct a multi-population GWAS meta-analysis in 38,463 participants (2440 cases). We then conduct conditional analyses and population specific GWAS. We discover twelve significant associations-eight from the multi-population meta-analysis (four novel), two from the multi-population conditional analysis (one novel), and two additional novel loci from the European meta-analysis. Fine-mapping implicates specific amino acid haplotypes in HLA-DQA1 and HLA-DQB1 driving the HLA Class II risk locus. Non-HLA loci colocalize with eQTLs of monocytes and numerous T-cell subsets in independent datasets. Colocalization with kidney eQTLs is lacking but overlap with kidney cell open chromatin suggests an uncharacterized disease mechanism in kidney cells. A polygenic risk score (PRS) associates with earlier disease onset. Altogether, these discoveries expand our knowledge of pSSNS genetic architecture across populations and provide cell-specific insights into its molecular drivers. Evaluating these associations in additional cohorts will refine our understanding of population specificity, heterogeneity, and clinical and molecular associations.
Collapse
Affiliation(s)
- Alexandra Barry
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle T McNulty
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyuan Jia
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hanna Debiec
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherde Médicale, Unité Mixte de Rechereche, S 1155, Paris, France
| | - Yang Luo
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - China Nagano
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetics and Rare Diseases Research Division, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Dina F Ahram
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Aditi Sinha
- Department of Pediatrics, AIIMS, New Delhi, India
| | - Nynke Teeninga
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gianluca Caridi
- Laboratory on Molecular Nephrology, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Monica Bodria
- Department of Nephrology and Renal Transplantation, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Rik Westland
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Turudic
- Department of Pediatric Nephrology, Dialysis and Transplantation, Clinical Hospital Hospital Center Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Mario Giordano
- Division of Nephrology and Pediatric Dialysis, Bari Polyclinic Giovanni XXIII Children's Hospital, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Riccardo Magistroni
- Department of Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Pisani
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Jana Reiterova
- Department of Nephrology, Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | | | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Patricia L Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, USA
| | - Francesco Scolari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Division of Nephrology and Dialysis, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Marijan Saraga
- Department of Pediatrics, University of Split, Split, Croatia
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Domenica Santoro
- Division of Nephrology and Dialysis Unit, University of Messina, Sicily, Italy
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Danko Milošević
- Department of Pediatric Nephrology, Dialysis and Transplantation, Clinical Hospital Hospital Center Zagreb, University of Zagreb Medical School, Zagreb, Croatia
- Croatian Academy of Medical Sciences, Praska 2/III p.p. 27, 10000, Zagreb, Croatia
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical Center New York-Presbyterian Morgan Stanley Children's Hospital in New York, New York, NY, USA
| | - Ali Gharavi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Fangmin Lin
- Department of Pediatric, Division of Pediatric Nephrology, Columbia University Irving Medical Center New York-Presbyterian Morgan Stanley Children's Hospital in New York, New York, NY, USA
| | - Ana Cristina Simœs E Silva
- Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aleksandra Zurowska
- Department of Pediatrics, Nephrology and Hypertension, Medical University Gdansk, Gdansk, Poland
| | - Claire Dossier
- AP-HP, Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France
| | - Gema Ariceta
- Pediatric Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Julien Hogan
- AP-HP, Pediatric Nephrology Department, Hôpital Robert-Debré, Paris, France
| | - Augustina Jankauskiene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Larisa Prikhodina
- Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Taldomskava St, 2, Moscow, Russia
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | - Arvind Bagga
- Department of Pediatrics, AIIMS, New Delhi, India
| | - Hae Cheong
- Department of Pediatrics, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14068, Korea
| | - Gian Marco Ghiggeri
- Department of Nephrology and Renal Transplantation, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Prayong Vachvanichsanong
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Dongwon Lee
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Marina Vivarelli
- Division of Nephrology, and Dialysis, Department of Pediatric Subspecialities, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, UK
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherde Médicale, Unité Mixte de Rechereche, S 1155, Paris, France
- Department of Nephrology, Centre Hospitalier du Mans, Le Mans, France
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Matthew G Sampson
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
- Kidney Disease Initiative & Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda K, Mishima-Tsumagari C, Ihara K, Inoue M, Yonemochi M, Hanada K, Matsumoto T, Shirouzu M, Zhang KYJ. Targeting Ras-binding domain of ELMO1 by computational nanobody design. Commun Biol 2023; 6:284. [PMID: 36932164 PMCID: PMC10023680 DOI: 10.1038/s42003-023-04657-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yukako Miyata-Yabuki
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Tsuda
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Inoue
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Yonemochi
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuharu Hanada
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Drug Discovery Structural Biology Platform Unit, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
15
|
The pseudokinase NRBP1 activates Rac1/Cdc42 via P-Rex1 to drive oncogenic signalling in triple-negative breast cancer. Oncogene 2023; 42:833-847. [PMID: 36693952 PMCID: PMC10005955 DOI: 10.1038/s41388-023-02594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
We have determined that expression of the pseudokinase NRBP1 positively associates with poor prognosis in triple negative breast cancer (TNBC) and is required for efficient migration, invasion and proliferation of TNBC cells in culture as well as growth of TNBC orthotopic xenografts and experimental metastasis. Application of BioID/MS profiling identified P-Rex1, a known guanine nucleotide exchange factor for Rac1, as a NRBP1 binding partner. Importantly, NRBP1 overexpression enhanced levels of GTP-bound Rac1 and Cdc42 in a P-Rex1-dependent manner, while NRBP1 knockdown reduced their activation. In addition, NRBP1 associated with P-Rex1, Rac1 and Cdc42, suggesting a scaffolding function for this pseudokinase. NRBP1-mediated promotion of cell migration and invasion was P-Rex1-dependent, while constitutively-active Rac1 rescued the effect of NRBP1 knockdown on cell proliferation and invasion. Generation of reactive oxygen species via a NRBP1/P-Rex1 pathway was implicated in these oncogenic roles of NRBP1. Overall, these findings define a new function for NRBP1 and a novel oncogenic signalling pathway in TNBC that may be amenable to therapeutic intervention.
Collapse
|
16
|
Boland A, Côté J, Barford D. Structural biology of DOCK-family guanine nucleotide exchange factors. FEBS Lett 2023; 597:794-810. [PMID: 36271211 PMCID: PMC10152721 DOI: 10.1002/1873-3468.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
DOCK proteins are a family of multi-domain guanine nucleotide exchange factors (GEFs) that activate the RHO GTPases CDC42 and RAC1, thereby regulating several RHO GTPase-dependent cellular processes. DOCK proteins are characterized by the catalytic DHR2 domain (DOCKDHR2 ), and a phosphatidylinositol(3,4,5)P3 -binding DHR1 domain (DOCKDHR1 ) that targets DOCK proteins to plasma membranes. DOCK-family GEFs are divided into four subfamilies (A to D) differing in their specificities for CDC42 and RAC1, and the composition of accessory signalling domains. Additionally, the DOCK-A and DOCK-B subfamilies are constitutively associated with ELMO proteins that auto-inhibit DOCK GEF activity. We review structural studies that have provided mechanistic insights into DOCK-protein functions. These studies revealed how a conserved nucleotide sensor in DOCKDHR2 catalyses nucleotide exchange, the basis for how different DOCK proteins activate specifically CDC42 and RAC1, and sometimes both, and how up-stream regulators relieve the ELMO-mediated auto-inhibition. We conclude by presenting a model for full-length DOCK9 of the DOCK-D subfamily. The involvement of DOCK GEFs in a range of diseases highlights the importance of gaining structural insights into these proteins to better understand and specifically target them.
Collapse
Affiliation(s)
- Andreas Boland
- Department of Molecular and Cellular BiologyUniversity of GenevaSwitzerland
| | - Jean‐Francois Côté
- Montreal Clinical Research Institute (IRCM)Canada
- Department of Medicine and Department of Biochemistry and Molecular MedicineUniversité de MontréalCanada
| | | |
Collapse
|
17
|
Nawrotek A, Dubois P, Zeghouf M, Cherfils J. Molecular principles of bidirectional signalling between membranes and small GTPases. FEBS Lett 2023; 597:778-793. [PMID: 36700390 DOI: 10.1002/1873-3468.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
Most small GTPases actuate their functions on subcellular membranes, which are increasingly seen as integral components of small GTPase signalling. In this review, we used the highly studied regulation of Arf GTPases by their GEFs to categorize the molecular principles of membrane contributions to small GTPase signalling, which have been highlighted by integrated structural biology combining in vitro reconstitutions in artificial membranes and high-resolution structures. As an illustration of how this framework can be harnessed to better understand the cooperation between small GTPases, their regulators and membranes, we applied it to the activation of the small GTPase Rac1 by DOCK-ELMO, identifying novel contributions of membranes to Rac1 activation. We propose that these structure-based principles should be considered when interrogating the mechanisms whereby small GTPase systems ensure spatial and temporal control of cellular signalling on membranes.
Collapse
Affiliation(s)
- Agata Nawrotek
- CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pavlina Dubois
- CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. J Cell Sci 2022; 135:275003. [PMID: 35194638 DOI: 10.1242/jcs.259825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms use DOCK family guanine nucleotide exchange factors to activate Rac/Rho-of-Plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here we use combinations of transgene complementation and live cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.
Collapse
Affiliation(s)
- Eileen L Mallery
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Makoto Yanagisawa
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Youngwoo Lee
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Robles
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jose M Alonso
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Daniel B Szymanski
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
19
|
Kukimoto-Niino M, Ihara K, Murayama K, Shirouzu M. Structural insights into the small GTPase specificity of the DOCK guanine nucleotide exchange factors. Curr Opin Struct Biol 2021; 71:249-258. [PMID: 34507037 DOI: 10.1016/j.sbi.2021.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) regulates cytoskeletal dynamics by activating the GTPases Rac and/or Cdc42. Eleven human DOCK proteins play various important roles in developmental processes and the immune system. Of these, DOCK1-5 proteins bind to engulfment and cell motility (ELMO) proteins to perform their physiological functions. Recent structural studies have greatly enhanced our understanding of the complex and diverse mechanisms of DOCK GEF activity and GTPase recognition and its regulation by ELMO. This review is focused on gaining structural insights into the substrate specificity of the DOCK GEFs, and discuss how Rac and Cdc42 are specifically recognized by the catalytic DHR-2 and surrounding domains of DOCK or binding partners.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|