1
|
Wang Y, Wu Q, You Y, Jiang W, Fu P, Dai K, Sun Y. ABCA6 Regulates Chondrogenesis and Inhibits Joint Degeneration via Orchestrated Cholesterol Efflux and Cellular Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410414. [PMID: 39823538 DOI: 10.1002/advs.202410414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted. A disease-causing mutation in ABCA6 is identified for FPD. Further analyses reveal a consistent correlation between ABCA6 expression downregulation and PD occurrence, chondrocyte degeneration, and OA onset. Moreover, ABCA6-KO mice demonstrate severe knee joint degeneration and accelerated OA progression. Besides, synovial mesenchymal stem cells (SMSCs) are extracted from WT, ABCA6-/+, and ABCA6-/- mice to create chondrogenic organoids in vitro, confirming ABCA6 deficiency can lead to chondrocyte degeneration via modulating cell cycle and activating cellular senescence. Moreover, transcriptome and metabolomic sequencing analysis on ABCA6-KO chondrocytes unveils that the ABCA6 deficiency inhibits cholesterol efflux, leading to intracellular cholesterol accumulation and subsequent cellular senescence and impaired chondrogenesis.A disease-causing mutation of ABCA6 is identified for FPD. ABCA6 is correlated with PD occurrence and subsequent OA progression. ABCA6 can serve as a potential target in chondrogenesis and OA treatment by orchestrated intracellular cholesterol efflux and delayed cellular senescence.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yongqing You
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Peiliang Fu
- Department of Orthopaedics, Shanghai Changzheng hospital, Naval Medical University, Shanghai, 200003, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Wang X, Lu X, Tian D, Qian H, Wang P, Zhu Y, Dang X, Liu R. Transcriptomic integration and ligand-receptor crosstalk reveal the underlying molecular mechanisms between hip cartilage and subchondral bone in osteonecrosis of femoral head. Gene 2024; 939:149179. [PMID: 39708930 DOI: 10.1016/j.gene.2024.149179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration. Additionally, we explored the molecular crosstalk between and within cartilage and subchondral bone using ligand-receptor pairs and ONFH cartilage proteomic data. Finally, key genes and ligand-receptor pairs were validated by quantitative real-time PCR (qRT-PCR). There were 27 common DEGs and five hub genes in cartilage and subchondral bone. The defined hub genes included COL1A1, COLIA2, CTSK, SPARC, and MXRA5. Notably, pathways related to ossification, extracellular matrix, and collagen formation were significantly altered in ONFH. Ligand-receptor data combined with DEGs revealed 60 differentially expressed ligands and 51 differentially expressed receptors in cartilage and four ligands and three receptors in subchondral bone. In inter-tissue comparisons, ligands from chondrocytes predominantly paired with receptors on osteoblasts in the subchondral bone, such as FN1, MMP2, and FGF1. Conversely, ligands from osteoblasts and osteocytes in the subchondral bone frequently paired with chondrocyte receptors, including FN1, COL1A1, and SEMA7A. At the protein level, we identified thirteen ligands and one receptor, with COL3A1 being the most highly expressed ligand and CD82 the only differentially expressed receptor in ONFH. This study highlights common molecular mechanisms and ligand-receptor crosstalk between and within cartilage and subchondral bone in ONFH, offering new insights into the disease's pathophysiology and potential molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xu Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xueliang Lu
- Department of Orthopedics, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province 471003, China.
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Hang Qian
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Pengbo Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Yingkang Zhu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
3
|
Dinesh NEH, Campeau PM, Reinhardt DP. The integral role of fibronectin in skeletal morphogenesis and pathogenesis. Matrix Biol 2024; 134:23-29. [PMID: 39232994 DOI: 10.1016/j.matbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Fibronectin (FN) serves as a critical organizer of extracellular matrix networks in two principal isoforms, the plasma FN and the cellular FN. While FN's pivotal role in various organ systems, including the blood vasculature, is well-established, its contribution to the development of the skeletal system is much less explored. Furthermore, the pathomechanisms of spondyloepiphyseal dysplasia caused by FN mutations remain elusive. In this minireview, we discuss findings from our recent two studies using i) an iPSC-based cell culture model to explore how FN mutations in spondyloepiphyseal dysplasia impact mesenchymal cell differentiation into chondrocytes and ii) conditional FN knockout mouse models to determine the physiological roles of FN isoforms during postnatal skeletal development. The data revealed that FN mutations cause severe intracellular and matrix defects in mesenchymal cells and impair their ability to differentiate into chondrocytes. The findings further demonstrate the important roles of both FN isoforms in orchestrating regulated chondrogenesis during skeletal development. We critically discuss the findings in the context of the existing literature.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Huang J, Li A, Liang R, Wu X, Jia S, Chen J, Jiao Z, Li C, Zhang X, Lin J. Future perspectives: advances in bone/cartilage organoid technology and clinical potential. BIOMATERIALS TRANSLATIONAL 2024; 5:425-443. [PMID: 39872930 PMCID: PMC11764185 DOI: 10.12336/biomatertransl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 01/30/2025]
Abstract
Bone and cartilage tissues are essential for movement and structure, yet diseases like osteoarthritis affect millions. Traditional therapies have limitations, necessitating innovative approaches. Organoid technology, leveraging stem cells' regenerative potential, offers a novel platform for disease modelling and therapy. This review focuses on advancements in bone/cartilage organoid technology, highlighting the role of stem cells, biomaterials, and external factors in organoid development. We discuss the implications of these organoids for regenerative medicine, disease research, and personalised treatment strategies, presenting organoids as a promising avenue for enhancing cartilage repair and bone regeneration. Bone/cartilage organoids will play a greater role in the treatment of bone/cartilage diseases in the future, and promote the progress of biological tissue engineering.
Collapse
Affiliation(s)
- Jingtao Huang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Aikang Li
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Rongji Liang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Xiaohao Wu
- Immunology and Rheumatology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Zilu Jiao
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Canfeng Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| |
Collapse
|
5
|
Wu H, Zhang C, Zhu R, Meng Q, Wang F, Gao L, Zhao N, Li H, Li M. Cell Communications Between GCs and Macrophages Contribute to the Residence of Macrophage in Preovulatory Follicles. Am J Reprod Immunol 2024; 92:e70009. [PMID: 39520105 DOI: 10.1111/aji.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
PROBLEM There were not only granulosa cells (GCs) but also immune cells in preovulatory follicular fluid. The objective of this study was to explore the interactions between macrophages and GCs via adhesion molecules in preovulatory follicles and the regulatory mechanisms of the interactions. METHOD OF STUDY Flow cytometry and immunofluorescence were used to detect the expression of ITGB1 in macrophages and fibronectin (FN)1 in GCs in preovulatory follicles from 12 patients. The synthesis of FN1 protein in human ovarian GCs line (KGN) was detected by western blot. An adhesion experiment was performed to observe the changes of KGN cells adhesion to macrophages. RESULTS The progesterone levels 12 h after human chorionic gonadotropin (HCG) administration in the high proportion immune cells (high immune [HI]) group were significantly higher than that in the low proportion immune cells (low immune [LI]) group (p < 0.0001). The expression of ITGB1 in macrophages in the HI group was higher than in the LI group. The expression of FN1 in GCs in HI group was higher than in LI group (p < 0.01). Progesterone increased the synthesis of FN1 in KGN cells (p < 0.0001) and was suppressed by the elimination of PGR. The adhesion effect of KGN cells on macrophages was enhanced by progesterone (p < 0.0001). CONCLUSION After luteinizing hormone (LH)/HCG surge, progesterone promotes the expression of FN1 in GCs by acting on the receptor PGR, and then GCs enhance the adhesion of macrophages by FN1-ITGB1 interaction, further leading to the result that macrophages perform diverse functional activities to maintain tissue homeostasis during ovulation.
Collapse
Affiliation(s)
- Huihua Wu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ce Zhang
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Rui Zhu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qingxia Meng
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fuxin Wang
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liang Gao
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Nannan Zhao
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mingqing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Dinesh NEH, Baratang N, Rosseau J, Mohapatra R, Li L, Mahalingam R, Tiedemann K, Campeau PM, Reinhardt DP. Fibronectin isoforms promote postnatal skeletal development. Matrix Biol 2024; 133:86-102. [PMID: 39159790 DOI: 10.1016/j.matbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive. To address these aspects, we have generated conditional knockout mouse models targeting the cellular FN isoform in cartilage (cFNKO), the plasma FN isoform in hepatocytes (pFNKO), and both isoforms together in a double knockout (FNdKO). We used these mice to determine the relevance of the two principal FN isoforms in skeletal development from postnatal day one to the adult stage at two months. We identified a distinct topological FN deposition pattern in the mouse limb during different gestational and postnatal skeletal development phases, with prominent levels at the resting and hypertrophic chondrocyte zones and in the trabecular bone. Cartilage-specific cFN emerged as the predominant isoform in the growth plate, whereas circulating pFN remained excluded from the growth plate and confined to the primary and secondary ossification centers. Deleting either isoform independently (cFNKO or pFNKO) yielded only relatively subtle changes in the analyzed skeletal parameters. However, the double knockout of cFN in the growth plate and pFN in the circulation of the FNdKO mice significantly reduced postnatal body weight, body length, and bone length. Micro-CT analysis of the adult bone microarchitecture in FNdKO mice exposed substantial reductions in trabecular bone parameters and bone mineral density. The mice also showed elevated bone marrow adiposity. Analysis of chondrogenesis in FNdKO mice demonstrated changes in the resting, proliferating and hypertrophic growth plate zones, consistent alterations in chondrogenic markers such as collagen type II and X, decreased apoptosis of hypertrophic chondrocytes, and downregulation of bone formation markers. Transforming growth factor-β1 and downstream phospho-AKT levels were significantly lower in the FNdKO than in the control mice, revealing a crucial FN-mediated regulatory pathway in chondrogenesis and bone formation. In conclusion, the data demonstrate that FN is essential for chondrogenesis and bone development. Even though cFN and pFN act in different regions of the bone, both FN isoforms are required for the regulation of chondrogenesis, cartilage maturation, trabecular bone formation, and overall skeletal growth.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | - Ronit Mohapatra
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ramshaa Mahalingam
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Tong X, Poramba-Liyanage DW, van Hoolwerff M, Riemers FM, Montilla-Rojo J, Warin J, Salvatori D, Camus A, Meulenbelt I, Ramos YFM, Geijsen N, Tryfonidou MA, Shang P. Isolation and tracing of matrix-producing notochordal and chondrocyte cells using ACAN-2A-mScarlet reporter human iPSC lines. SCIENCE ADVANCES 2024; 10:eadp3170. [PMID: 39441923 PMCID: PMC11498221 DOI: 10.1126/sciadv.adp3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The development of human induced pluripotent stem cell (iPSC)-based regenerative therapies is challenged by the lack of specific cell markers to isolate differentiated cell types and improve differentiation protocols. This issue is particularly critical for notochordal-like cells and chondrocytes, which are crucial in treating back pain and osteoarthritis, respectively. Both cell types produce abundant proteoglycan aggrecan (ACAN), crucial for the extracellular matrix. We generated two human iPSC lines containing an ACAN-2A-mScarlet reporter. The reporter cell lines were validated using CRISPR-mediated transactivation and functionally validated during notochord and cartilage differentiation. The ability to isolate differentiated cell populations producing ACAN enables their enrichment even in the absence of specific cell markers and allows for comprehensive studies and protocol refinement. ACAN's prevalence in various tissues (e.g., cardiac and cerebral) underscores the reporter's versatility as a valuable tool for tracking matrix protein production in diverse cell types, benefiting developmental biology, matrix pathophysiology, and regenerative medicine.
Collapse
Affiliation(s)
- Xiaole Tong
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Deepani W. Poramba-Liyanage
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Joaquin Montilla-Rojo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Julie Warin
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Daniela Salvatori
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Anne Camus
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Yolande F. M. Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| |
Collapse
|
8
|
Hajmousa G, de Almeida RC, Bloks N, Ruiz AR, Bouma M, Slieker R, Kuipers TB, Nelissen RGHH, Ito K, Freund C, Ramos YFM, Meulenbelt I. The role of DNA methylation in chondrogenesis of human iPSCs as a stable marker of cartilage quality. Clin Epigenetics 2024; 16:141. [PMID: 39407288 PMCID: PMC11481477 DOI: 10.1186/s13148-024-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Lack of insight into factors that determine purity and quality of human iPSC (hiPSC)-derived neo-cartilage precludes applications of this powerful technology toward regenerative solutions in the clinical setting. Here, we set out to generate methylome-wide landscapes of hiPSC-derived neo-cartilages from different tissues-of-origin and integrated transcriptome-wide data to identify dissimilarities in set points of methylation with associated transcription and the respective pathways in which these genes act. METHODS We applied in vitro chondrogenesis using hiPSCs generated from two different tissue sources: skin fibroblasts and articular cartilage. Upon differentiation toward chondrocytes, these are referred to as hFiCs and hCiC, respectively. Genome-wide DNA methylation and RNA sequencing datasets were generated of the hiPSC-derived neo-cartilages, and the epigenetically regulated transcriptome was compared to that of neo-cartilage deposited by human primary articular cartilage (hPAC). RESULTS Methylome-wide landscapes of neo-cartilages of hiPSCs reprogrammed from two different somatic tissues were 85% similar to that of hPACs. By integration of transcriptome-wide data, differences in transcriptionally active CpGs between hCiC relative to hPAC were prioritized. Among the CpG-gene pairs lower expressed in hCiCs relative to hPACs, we identified genes such as MGP, GDF5, and CHAD enriched in closely related pathways and involved in cartilage development that likely mark phenotypic differences in chondrocyte states. Vice versa, among the CpG-gene pairs higher expressed, we identified genes such as KIF1A or NKX2-2 enriched in neurogenic pathways and likely reflecting off target differentiation. CONCLUSIONS We did not find significant variation between the neo-cartilages derived from hiPSCs of different tissue sources, suggesting that application of a robust differentiation protocol such as we applied here is more important as compared to the epigenetic memory of the cells of origin. Results of our study could be further exploited to improve quality, purity, and maturity of hiPSC-derived neo-cartilage matrix, ultimately to realize introduction of sustainable, hiPSC-derived neo-cartilage implantation into clinical practice.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Niek Bloks
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Marga Bouma
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Roderick Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Dinesh NEH, Rousseau J, Mosher DF, Strauss M, Mui J, Campeau PM, Reinhardt DP. Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia. Cell Mol Life Sci 2024; 81:419. [PMID: 39367925 PMCID: PMC11456097 DOI: 10.1007/s00018-024-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Bloks NG, Harissa Z, Mazzini G, Adkar SS, Dicks AR, Hajmousa G, Steward N, Koning RI, Mulder A, de Koning BBR, Kloppenburg M, de Almeida RC, Ramos YF, Guilak F, Meulenbelt I. A Damaging COL6A3 Variant Alters the MIR31HG-Regulated Response of Chondrocytes in Neocartilage Organoids to Hyperphysiologic Mechanical Loading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400720. [PMID: 39021299 PMCID: PMC11423154 DOI: 10.1002/advs.202400720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
The pericellular matrix (PCM), with its hallmark proteins collagen type VI (COLVI) and fibronectin (FN), surrounds chondrocytes and is critical in transducing the biomechanical cues. To identify genetic variants that change protein function, exome sequencing is performed in a patient with symptomatic OA at multiple joint sites. A predicted damaging variant in COL6A3 is identified and introduced by CRISPR-Cas9 genome engineering in two established human induced pluripotent stem cell-derived in-vitro neocartilage organoid models. The downstream effects of the COL6A3 variant on the chondrocyte phenotypic state are studied by a multi-omics (mRNA and lncRNA) approach in interaction with hyper-physiological mechanical loading conditions. The damaging variant in COL6A3 results in significantly lower binding between the PCM proteins COLVI and FN and provokes an osteoarthritic chondrocyte state. By subsequently exposing the neocartilage organoids to hyperphysiological mechanical stress, it is demonstrated that the COL6A3 variant in chondrocytes abolishes the characteristic inflammatory signaling response after mechanical loading with PTGS2, PECAM1, and ADAMTS5, as central genes. Finally, by integrating epigenetic regulation, the lncRNA MIR31HG is identified as key regulator of the characteristic inflammatory signaling response to mechanical loading.
Collapse
Affiliation(s)
- Niek Gc Bloks
- Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Zainab Harissa
- Washington University, Saint Louis, MO, 63110, USA
- Shriners Hospitals for Children, Saint Louis, MO, 63110, USA
| | - Giorgia Mazzini
- Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Shaunak S Adkar
- Washington University, Saint Louis, MO, 63110, USA
- Shriners Hospitals for Children, Saint Louis, MO, 63110, USA
| | - Amanda R Dicks
- Washington University, Saint Louis, MO, 63110, USA
- Shriners Hospitals for Children, Saint Louis, MO, 63110, USA
| | | | - Nancy Steward
- Washington University, Saint Louis, MO, 63110, USA
- Shriners Hospitals for Children, Saint Louis, MO, 63110, USA
| | - Roman I Koning
- Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Aat Mulder
- Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | | | | | | | - Yolande Fm Ramos
- Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Farshid Guilak
- Washington University, Saint Louis, MO, 63110, USA
- Shriners Hospitals for Children, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
11
|
Bloks NGC, Dicks A, Harissa Z, Nelissen RGHH, Hajmousa G, Ramos YFM, de Almeida RC, Guilak F, Meulenbelt I. Hyper-physiologic mechanical cues, as an osteoarthritis disease-relevant environmental perturbation, cause a critical shift in set points of methylation at transcriptionally active CpG sites in neo-cartilage organoids. Clin Epigenetics 2024; 16:64. [PMID: 38730337 PMCID: PMC11087253 DOI: 10.1186/s13148-024-01676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Niek G C Bloks
- Dept. Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Amanda Dicks
- Washington University, Saint Louis, MO, USA
- Shriners Hospitals for Children, Saint Louis, MO, USA
| | - Zainab Harissa
- Washington University, Saint Louis, MO, USA
- Shriners Hospitals for Children, Saint Louis, MO, USA
| | - Rob G H H Nelissen
- Department Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ghazaleh Hajmousa
- Dept. Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Yolande F M Ramos
- Dept. Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Dept. Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Farshid Guilak
- Washington University, Saint Louis, MO, USA
- Shriners Hospitals for Children, Saint Louis, MO, USA
| | - Ingrid Meulenbelt
- Dept. Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Li G, Li S, Xie J, Zhang Z, Zou J, Yang C, He L, Zeng Q, Shu L, Huang G. Identifying changes in dynamic plantar pressure associated with radiological knee osteoarthritis based on machine learning and wearable devices. J Neuroeng Rehabil 2024; 21:45. [PMID: 38570841 PMCID: PMC10988837 DOI: 10.1186/s12984-024-01337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is an irreversible degenerative disease that characterized by pain and abnormal gait. Radiography is typically used to detect KOA but has limitations. This study aimed to identify changes in plantar pressure that are associated with radiological knee osteoarthritis (ROA) and to validate them using machine learning algorithms. METHODS This study included 92 participants with variable degrees of KOA. A modified Kellgren-Lawrence scale was used to classify participants into non-ROA and ROA groups. The total feature set included 210 dynamic plantar pressure features captured by a wearable in-shoe system as well as age, gender, height, weight, and body mass index. Filter and wrapper methods identified the optimal features, which were used to train five types of machine learning classification models for further validation: k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), AdaBoost, and eXtreme gradient boosting (XGBoost). RESULTS Age, the standard deviation (SD) of the peak plantar pressure under the left lateral heel (f_L8PPP_std), the SD of the right second peak pressure (f_Rpeak2_std), and the SD of the variation in the anteroposterior displacement of center of pressure (COP) in the right foot (f_RYcopstd_std) were most associated with ROA. The RF model with an accuracy of 82.61% and F1 score of 0.8000 had the best generalization ability. CONCLUSION Changes in dynamic plantar pressure are promising mechanical biomarkers that distinguish between non-ROA and ROA. Combining a wearable in-shoe system with machine learning enables dynamic monitoring of KOA, which could help guide treatment plans.
Collapse
Affiliation(s)
- Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shilin Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junan Xie
- School of Microelectronics, South China University of Technology, Guangzhou, China
| | - Zhuodong Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Chengduan Yang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Longlong He
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China.
| | - Lin Shu
- School of Future Technology, South China University of Technology, Guangzhou, China.
- Pazhou Lab, Guangzhou, China.
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Zhu W, Shi J, Weng B, Zhou Z, Mao X, Pan S, Peng J, Zhang C, Mao H, Li M, Zhao J. EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration. J Tissue Eng 2024; 15:20417314241268189. [PMID: 39157647 PMCID: PMC11329914 DOI: 10.1177/20417314241268189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.
Collapse
Affiliation(s)
- Weilai Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jiaying Shi
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Bowen Weng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhenger Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Xufeng Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Senhao Pan
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jing Peng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Chi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Mei Li
- Zhejiang Key Laboratory of Precision Medicine for Atherosclerotic Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
Bloks NG, Dicks A, Harissa Z, Nelissen RG, Hajmousa G, Ramos YF, Almeida RC, Guilak F, Meulenbelt I. Hyper-physiologic mechanical cues, as an osteoarthritis disease relevant environmental perturbation, cause a critical shift in set-points of methylation at transcriptionally active CpG sites in neo-cartilage organoids. RESEARCH SQUARE 2023:rs.3.rs-3568544. [PMID: 38014245 PMCID: PMC10680909 DOI: 10.21203/rs.3.rs-3568544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (1). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. Results We showed that hyper-physiological loading evokes consistent changes in ML-tCpGs associated with expression changes in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology, we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. Conclusion Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCPGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.
Collapse
|
15
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
16
|
van Hoolwerff M, Tuerlings M, Wijnen IJL, Suchiman HED, Cats D, Mei H, Nelissen RGHH, van der Linden-van der Zwaag HMJ, Ramos YFM, Coutinho de Almeida R, Meulenbelt I. Identification and functional characterization of imbalanced osteoarthritis-associated fibronectin splice variants. Rheumatology (Oxford) 2023; 62:894-904. [PMID: 35532170 PMCID: PMC9891405 DOI: 10.1093/rheumatology/keac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.
Collapse
Affiliation(s)
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | - Imke J L Wijnen
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | - H Eka D Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | | | | | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | | | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| |
Collapse
|
17
|
Qiu J, Chi H, Gan C, Zhou X, Chen D, Yang Q, Chen Y, Wang M, Yang H, Jiang W, Li Q. A high-impact FN1 variant correlates with fibronectin-mediated glomerulopathy via decreased binding to collagen type IV. Pathology 2023; 55:498-507. [PMID: 36774238 DOI: 10.1016/j.pathol.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023]
Abstract
The glomerular basement membrane (GBM) consists of laminins, collagen IV, nidogens, and fibronectin and is essential for filtration barrier integrity in the kidney. Critically, structural and functional abnormalities in the GBM are involved in chronic kidney disease (CKD) occurrence and development. Fibronectin is encoded by FN1 and is essential for podocyte-podocyte and podocyte-matrix interactions. However, disrupted or disordered fibronectin occurs in many kidney diseases. In this study, we identified a novel mutation (c.3415G>A) in FN1 that causes glomerular fibronectin-specific deposition in a gain-of-function manner, that may be associated with thin basement membrane nephropathy (TBMN) and expand the spectrum of phenotypes seen in glomerulopathy with fibronectin deposits (GFND). Our studies confirmed this variant increased fibronectin's ability to bind to integrin, thereby maintaining podocyte adhesion. Also, we hypothesised that TBMN arose as the fibronectin variant exhibited a decreased capacity to bind COL4A3/4. Our study is the first to identify and link this novel pathogenic mutation (c.3415G>A) in FN1 to GFND as well as TBMN, which may broaden the phenotype and mutation spectrums of the FN1 gene. We believe our data will positively impact genetic counselling and prenatal diagnostics for GFND with TBMN and other associated conditions that may be commonly benign conditions in humans, and may not require proteinuria-lowering treatments or renal biopsy.
Collapse
Affiliation(s)
- Jiawen Qiu
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Chi
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Gan
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xindi Zhou
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Chen
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Yang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mo Wang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiping Yang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Yu Y, Wang J, Li Y, Chen Y, Cui W. Cartilaginous Organoids: Advances, Applications, and Perspectives. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuhao Yu
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Juan Wang
- Department of Orthopedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopedics Ruijin Hospital School of Medicine Shanghai Jiao Tong University 197 Ruijin 2nd Road Shanghai 200025 P.R. China
| | - Yamin Li
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Yunsu Chen
- Department of Orthopedic Surgery School of Medicine Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University 600 Yishan Road Shanghai 201306 P.R. China
| | - Wenguo Cui
- Department of Orthopedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopedics Ruijin Hospital School of Medicine Shanghai Jiao Tong University 197 Ruijin 2nd Road Shanghai 200025 P.R. China
| |
Collapse
|
19
|
Gohari Z, Baghaei A, Mahboudi H, Hashemi J, Rahmati M, Islami M, Mansouri V. Ursolic acid incorporated nanofibers improves chondrogenic differentiation of mesenchymal stem cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Gohari
- Department of Animal Science, School of Biology, Faculty of Science University of Tehran Tehran Iran
| | - Ahmadali Baghaei
- Faculty of Medicine, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Hossein Mahboudi
- Department of Biotechnology, School of Pharmacy Alborz University of Medical Sciences karaj Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine North Khorasan University of Medical Sciences Bojnurd Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine Guilan University of Medical Sciences Rasht Iran
| | - Maryam Islami
- Department of Biotechnology, School of Medicine Alborz University of Medical Science Karaj Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|