1
|
Alonzo EA, Lato TJ, Gonzalez M, Olson TL, Savage QR, Garza LN, Green MT, Koone JC, Cook NE, Dashnaw CM, Armstrong DB, Wood JL, Garbrecht LS, Haynes ML, Jacobson MR, Guberman-Pfeffer MJ, Minkara MS, Wedler HB, Zechmann B, Shaw BF. Universal pictures: A lithophane codex helps teenagers with blindness visualize nanoscopic systems. SCIENCE ADVANCES 2024; 10:eadj8099. [PMID: 38198555 PMCID: PMC10780880 DOI: 10.1126/sciadv.adj8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
People with blindness have limited access to the high-resolution graphical data and imagery of science. Here, a lithophane codex is reported. Its pages display tactile and optical readouts for universal visualization of data by persons with or without eyesight. Prototype codices illustrated microscopy of butterfly chitin-from N-acetylglucosamine monomer to fibril, scale, and whole insect-and were given to high schoolers from the Texas School for the Blind and Visually Impaired. Lithophane graphics of Fischer-Spier esterification reactions and electron micrographs of biological cells were also 3D-printed, along with x-ray structures of proteins (as millimeter-scale 3D models). Students with blindness could visualize (describe, recall, distinguish) these systems-for the first time-at the same resolution as sighted peers (average accuracy = 88%). Tactile visualization occurred alongside laboratory training, synthesis, and mentoring by chemists with blindness, resulting in increased student interest and sense of belonging in science.
Collapse
Affiliation(s)
- Emily A. Alonzo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Travis J. Lato
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Mayte Gonzalez
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Trevor L. Olson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Quentin R. Savage
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Levi N. Garza
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Morgan T. Green
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Jordan C. Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Noah E. Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | | | - John L. Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Lisa S. Garbrecht
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Madeline L. Haynes
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Miriam R. Jacobson
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | | | - Mona S. Minkara
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Patti KM, Patti GJ. The feel of inclusivity. SCIENCE ADVANCES 2022; 8:eade0023. [PMID: 35977006 PMCID: PMC9385134 DOI: 10.1126/sciadv.ade0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Collaboration between diverse groups with different perspectives promotes scientific discovery. To enhance these partnerships and facilitate communication, innovative advances in universal design are essential.
Collapse
Affiliation(s)
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Koone JC, Dashnaw CM, Alonzo EA, Iglesias MA, Patero KS, Lopez JJ, Zhang AY, Zechmann B, Cook NE, Minkara MS, Supalo CA, Wedler HB, Guberman-Pfeffer MJ, Shaw BF. Data for all: Tactile graphics that light up with picture-perfect resolution. SCIENCE ADVANCES 2022; 8:eabq2640. [PMID: 35977019 PMCID: PMC9385137 DOI: 10.1126/sciadv.abq2640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
People who are blind do not have access to graphical data and imagery produced by science. This exclusion complicates learning and data sharing between sighted and blind persons. Because blind people use tactile senses to visualize data (and sighted people use eyesight), a single data format that can be easily visualized by both is needed. Here, we report that graphical data can be three-dimensionally printed into tactile graphics that glow with video-like resolution via the lithophane effect. Lithophane forms of gel electropherograms, micrographs, electronic and mass spectra, and textbook illustrations could be interpreted by touch or eyesight at ≥79% accuracy (n = 360). The lithophane data format enables universal visualization of data by people regardless of their level of eyesight.
Collapse
Affiliation(s)
- Jordan C. Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Emily A. Alonzo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Miguel A. Iglesias
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Kelly-Shaye Patero
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Juan J. Lopez
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Ao Yun Zhang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Noah E. Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Mona S. Minkara
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | | | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Computational Chemistry in the Undergraduate Classroom – Pedagogical Considerations and Teaching Challenges. Isr J Chem 2021. [DOI: 10.1002/ijch.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|